
Formal Verification of Symbolic Bug Finders

Saarland University

Department of Computer Science

Master’s Thesis

submitted by

Arthur Correnson

Saarbrücken, January 2024

Supervisor: Prof. Bernd Finkbeiner

Reviewer: Prof. Bernd Finkbeiner

Dr. Dominic Steinhöfel

Submission: January 12, 2024

Abstract

Testing the robustness of software systems is a fundamental concern. To do so, a
common approach is to rely on automated testing methods to search for bugs and
potential errors before deploying systems. To be reliable, a testing tool needs to be
precise and exhaustive: it should not report false alarms, and not miss too many bugs.
In this thesis, we use the Coq proof assistant to implement and prove the correctness of
an automated bug finder based on symbolic execution. More precisely, we prove that
our bug finder is precise (it cannot report false alarms) and relatively exhaustive (it will
enumerate all bugs) against the formal semantics of a target programming language.

Acknowledgements

First, I would like to thank Dr. Dominic Steinhöfel for introducing me to the exciting
world of symbolic execution, and supporting me through the development and the
publication of the research results presented in this thesis. Then, I would also like to
thank professor Finkbeiner for welcoming me in his fantastic research group. Finally, I
especially thank Rahel Pauli for being an extraordinary life partner and for supporting
me daily through the long process of writing a thesis.

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any
other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public
by having them added to the library of the Computer Science Department.

Saarbrücken, 12 January, 2024

Erklärung

Ich erkläre hiermit, dass die vorliegende Arbeit mit der elektronischen Version übere-
instimmt.

Statement

I hereby confirm the congruence of the contents of the printed data and the electronic
version of the thesis.

Saarbrücken, 12 January, 2024

Contents

1 Introduction 1
1.1 Background and motivations . 1
1.2 Contributions . 2
1.3 Structure of the thesis . 3

2 Preliminaries 5
2.1 Automated bug-finding by symbolic execution 5
2.2 The Coq proof assistant . 9

2.2.1 Functional programming . 9
2.2.2 Logic programming . 10
2.2.3 Interactive proofs . 11
2.2.4 Coinduction and lazy computations 12

3 Formal foundations of symbolic execution 15
3.1 BUG: a target programming language . 15

3.1.1 Syntax . 15
3.1.2 Semantics . 16
3.1.3 Runtime errors in BUG . 18
3.1.4 Formalizing the semantics in Coq 19

3.2 Symbolic execution of BUG . 21
3.2.1 Symbolic semantics . 21
3.2.2 Relating concrete and symbolic states 23
3.2.3 Relating concrete and symbolic evaluation 25
3.2.4 Soundness of the symbolic semantics 27
3.2.5 Completeness . 30

xi

4 Verified Implementation of a Symbolic Interpreter 33
4.1 Challenges . 33

4.1.1 Loops VS termination . 33
4.1.2 Non-determinism VS exhaustiveness 34

4.2 A coinductive symbolic interpreter . 34
4.3 Faithfulness to the Reference Semantics . 38

5 Reducing The State Space 41
5.1 Symbolic semantics with pruning . 41
5.2 Implementing the interpreter with pruning 43
5.3 Correctness of the interpreter with pruning 44

6 Deriving a Verified Bug Finder 47
6.1 Turning the symbolic interpreter into a bug finder 47
6.2 Bug finding under assumptions . 50
6.3 Extraction from Coq to OCaml . 52

6.3.1 Choosing a constraint solver . 52
6.3.2 The OCaml Front-end of the bug finder 53
6.3.3 Comments on the Coq development 54

6.4 Evaluation . 55
6.4.1 Sample programs . 55
6.4.2 Results . 56

7 Related Work 59
7.1 Verified program provers . 59
7.2 Formal foundations of bug-finding . 59

8 Conclusion 63

xii

Chapter 1
Introduction

1.1 Background and motivations

On the need to verify critical software. Computer programs are everywhere, including
in applications where human lives are at stake, such as public transport, medical facili-
ties, or military equipment. In such use cases, program failures (so-called bugs) cannot
be tolerated, and programs have to be carefully checked before being deployed. When
programs are reasonably small, their authors can manually review them. However,
for large software with millions of lines of source code, manual verification becomes
intractable, and we need to rely on automated methods to check that programs behave
as intended. There exist two main categories of such automated verification techniques:
automated testing and automated proving. Automated testing, also called automated bug
finding, aims to find scenarios where programs fail. For example, fuzz-testing [Fio+20]
is an automated bug finding methods that repeatedly execute programs with random
inputs until the program crashes. Other methods, such as symbolic execution [Kin76]
or bounded model-checking [Bie+09] can also simulate program executions simultane-
ously to find more bugs faster. On the other hand, automated provers aim at formally
proving the absence of bugs using mathematical reasoning. Examples of automated
proving techniques are abstract interpretation [CC77; Bla+03], automated deductive
verification [Dĳ75; Bau+21], and model checking [CES09].

The limitations of automated verifiers. Using automated verifiers (automated provers
or automated bug finders1) can greatly improve the reliability of critical software. How-

1The word "automated verifier" is often used as a synonym for "automated prover" in the literature. In
this thesis, we call "verifier" any automatic tool used to check the correctness of programs. This includes
automated bug finders.

1

1. Introduction

ever, relying on automated verification is not enough. Indeed, why should we trust
automated verifiers? In particular, an automated verifier could contain a bug leading to
inconsistent results. For example, a bug finder could miss a critical bug or, more subtly,
spuriously detect a bug in a bug-free program. Program provers suffer from the same
problem: an error in a program prover could lead to an incorrect program being labeled
as correct. To overcome these limitations, it is crucial to question the very correctness
of automated verification tools in general [God05; Ler11]. In this thesis, we focus on
automated testing and we propose to formally prove the correctness of an automated
bug finder.

Proof assistants as a trusting basis. One way to truly trust program verifiers could
be to apply automated proof methods to establish once and for all the correctness
of a program prover or a bug finder. Unfortunately, this would only slightly shift
the problem from trusting the verifier to trusting the verifier’s verifier. To break this
seemingly endless loop, a widespread solution is to use a proof assistant as a trusting
basis. Proof assistants are software allowing to write programs, state theorems, and
develop mathematical proofs thereof in one unified formal language. Contrary to other
tools such as automated theorem provers, a proof assistant requires the proofs to be
completely written by the users. The sole task of the assistant is then to validate the
correctness of every reasoning step in the proofs. This task is elementary enough to
be performed by a very small and trustworthy proof-checking algorithm (called the
kernel of the proof assistant) that implements a minimal set of reasoning principles and
inference rules. Typically, the kernel of a proof assistant is small enough to be manually
verified by an expert. All other features of the proof assistant are built on top of the
proof kernel making it the only critical component that needs to be trusted. Thanks to
their incomparable level of reliability, proof assistants are tools of choice to prove the
correctness of critical programs such as automated verifiers.

1.2 Contributions

Summary of the contributions. In this thesis, we propose to formally prove the cor-
rectness of an automated bug finder using the Coq proof assistant2. Our bug finder is
based on symbolic execution, a common method used in automated testing to explore
many executions of a program at once. It targets a simple imperative programming
language with integer arithmetic and loops. The source code of this bug finder is ac-
companied with a machined-checkable proof that it is precise and exhaustive: it finds
only true bugs, and it can find all the bugs (if enough time and memory is provided).
The correctness of tools based on symbolic execution has already been studied [Kne91;

2https://coq.inria.fr

2

https://coq.inria.fr

1.3. Structure of the thesis

BB19; Ste20; Por+22; Keu+22b]. However, to the best of our knowledge, this is the
first attempt at verifying the correctness of an automated bug finder based on symbolic
execution using a proof assistant.

Publications. The work presented in this thesis builds on the following peer reviewed
publications:

[CS23] Engineering a Formally Verified Automated Bug Finder

[Cor] À la recherche de tous les vrais bugs

Data Availability. The source code and the Coq proofs described in this thesis can be
found online at the address https://github.com/acorrenson/master_thesis_data.

1.3 Structure of the thesis

The thesis is structured in 7 chapters:

• Chapter 2 gives an overview of symbolic execution and highlights some of the
challenges that arise when studying the correctness of symbolic execution-based
bug finders. It also introduces the Coq proof assistant.

• Chapter 3 focuses on the formalization of a toy programming language called
BUG, and presents the notion of symbolic semantics as a trustworthy basis to
understand what it means to symbolic execute programs.

• Chapter 4 discusses how to implement and verify the correctness of a symbolic
interpreter based on a symbolic semantics.

• Chapter 5 presents a slightly improved symbolic semantics that can perform on-
the-fly pruning of the state space. The implementation of this semantics as an
interpreter is also discussed.

• Chapter 6 explains how to build and verify a usable bug finder based on the
symbolic interpreters presented in the two previous chapters.

• Chapter 7 presents a selection of related projects and research papers and compares
them with the contributions of this thesis.

• Chapter 8 concludes the thesis and presents future research directions.

3

https://github.com/acorrenson/master_thesis_data

Chapter 2
Preliminaries

2.1 Automated bug-finding by symbolic execution

To find bugs, one could repeatedly execute programs with various combinations of
inputs to identify these that make a program crash. This relatively simple idea led to
the development of automated bug-finding tools called fuzzers [MFS90; Fio+20]. While
this brute-force approach can find many flaws in large software, it still has limitations.
In some cases, the odds of identify a bug-triggering inputs are so low that fuzzers are
of little use [Bun+21]. Consider for example the following simple program:

1 def crash_if_42(x : int)
2 if x == 42:
3 fail()

4 return

Executing the python function suspicious with x = 42 as an input makes the program
crash. However, assuming a 32 bits representation of integers, the probability of ran-
domly generating exactly the input 42 is only 1

232
! To overcome this intrinsic limitation

of fuzzing, one can use symbolic execution techniques. Symbolic execution was first
introduced by King [Kin76] as a method to explore many program executions at once.
The main idea is to execute the program under test with symbolic placeholders that
represent an arbitrary value instead of fixed inputs. Initially, all program variables store
a unique symbol (typically, their own name). When we need to evaluate an expres-
sion that depends on some program variables, we replace the free variables with their
current symbolic values and return the resulting expression instead.

5

2. Preliminaries

Example 2.1.1.

1 def incr_and_double(x : int):
2 x = x + 1

3 x = 2 * x

4 return x

Symbolically executing the function incr_and_double returns the symbolic expression
2 ∗ (x+ 1). △

When a conditional instruction is encountered during the execution (for example, when
executing an "if then else"), we cannot always determine the truth value of the condition
as it may depends on the exact value of the inputs. Instead, we explore all possible
ways to pursue the execution. For example, in the case of an "if then else", we execute
the "then" branch under the assumption that the condition holds, and we also execute
the "else" branch under the assumption that the condition does not hold. To remember
which assumptions have been made through the execution, we store the conditions
explicitly in the form of a boolean formula (often called path condition). As a result,
symbolic execution produces a tree representing all possible step-by-step executions of
a program. Each node of the tree is labeled with the condition that needs to be satisfied
in order to reach the corresponding program state.

Example 2.1.2.

1 def incr_and_test(x : int):
2 x = x + 1

3 if x < 0:
4 fail()

5 return

Symbolically executing the python function fail_if_neg generates the following sym-
bolic execution tree. Each node is labeled with a line number, a path condition, and the
current content of the variables. Initially, the input x is treated as the opaque symbol x.

2 true [x 7→ x]

3 true [x 7→ x+ 1]

4 x+ 1 < 0 [x 7→ x+ 1] 5 x+ 1 ⩾ 0 [x 7→ x+ 1]

fail return

△

6

2.1. Automated bug-finding by symbolic execution

Symbolic execution gives a simple method to find bugs. It suffices to inspect the symbolic
execution tree to see if there exists a branch leading to a failure state. To check that this
branch of the symbolic execution tree is actually feasible, we additionally need to check
that the corresponding path condition is satisfiable. For example, in example 2.1.2, a
bug is reached when the condition x + 1 < 0 is satisfied. This condition is satisfiable
(for example, we can pick x = −2) and therefore the program incr_and_test can crash.
Testing the satisfiability of path conditions is necessary to avoid false alarms (reporting
bugs that are not really bugs).

Example 2.1.3.

1 def abs_and_test(x : int):
2 x = abs(x)

3 if x < 0:
4 fail()

5 return

The symbolic execution tree of abs_and_testhas a branch leading to a failure. However,
its path condition is unsatisfiable which means the bug cannot be reached, regardless
of the input.

2 true [x 7→ x]

3 true [x 7→ |x|]

4 |x| < 0 [x 7→ |x|] 5 |x| ⩾ 0 [x 7→ |x|]

fail return

△

To check the satisfiability of path conditions, we can rely on constraint solvers (for
example Z3, VeriT, or CVC4 [DB08; Bou+09; Bar+11]). We can then derive a systematic
algorithm to find bugs by symbolic execution.

L← leaves(symbolic_execution_tree(P))
for all state ∈ L do

if is_error(state) and state.path is satisfiable then
return P has a bug

end if
end for

7

2. Preliminaries

return P has no bug

Assuming that we have a sound and complete constraint solver, and the symbolic
execution is correctly implemented (we will discuss what this means formally later),
this bug finding algorithm is precise and exhaustive. Precise means that it detects only
real runtime-errors, exhaustive means it can detect all of them. However, in practice,
this bug-finding algorithm cannot be implemented as it is. First of all, a solver can fail to
decide the satisfiability of a constraint. This can happen if the solver is incomplete (i.e., it
does not know how to solve certain constraints), or because not enough resources (time
and memory) are available. Furthermore, even state of the art constraint solvers can
produce inconsistent results [WZS20] which could lead to a bug miss (for example, if the
solver mistakenly treats a satisfiable constraint labeling an error state as unsatisfiable)
or to a spurious bug report (if the solver treats an unsatisfiable constraint labeling an
error state as satisfiable).

Another major limitation is that symbolically executing an arbitrary program may never
terminate. In particular, when programs contains unbounded loops, the symbolic
execution tree can have infinite branches. As a consequence, only a subset of the
reachable program states can be computed in finite time.

Example 2.1.4. The following program with an unbounded while loop generates an
infinite symbolic execution tree:

1 while True: x = x + 1

1 true x := x 1 true x := x+ 1 1 true x := x+ 2 (. . .)

△

Due to potential non-termination, it is a priori impossible to cover all reachable states of
any arbitrary program in finite time. In practice, we can only compute a subset of the
state space which means our algorithm do detect bugs is not exhaustive. Nonetheless,
if the symbolic execution tree is expanded lazily, it is possible to make the algorithm
relatively exhaustive: it will enumerate all potential bugs if enough time and resources are
allocated. We propose such a lazy implementation of this algorithm in Coq in chapter
4.

Finally, to be correct, a symbolic interpreter should strictly follow the same execution
model that is used to run programs in production. To demonstrate why this is important,
we take a simple program as an example. Below are two snippets of code for a function
suspicous in Python and Java.

8

2.2. The Coq proof assistant

1 public void suspicious(int x) {
2 if (x >= -5 && x / 3 == -2) {
3 fail();

4 }

5 }

1 def suspicious(x : int):
2 if x >= -5 and x // 3 == -2:
3 fail()

4

5

At first sight, both functions are equivalent. However, according to the semantics of
Python, the function has a bug (it crashes if executed with input x = −5). On the other
hand, in Java, there is no input that causes the function suspicious to crash. This is due
to different interpretations of integer division in these programming languages. If a bug
finder misinterprets the semantics of an operator, it can lead to a bug miss (e.g., if we
analyze the Python code with Java semantics) or to a false alarm (e.g., if we analyze the
Java code with Python semantics). To avoid this problem, a reliable symbolic interpreter
should be provably faithful to the reference semantics of the analyzed programming
language. In this thesis, we use the Coq proof assistant to prove that a symbolic
interpreter is correct with respect to the semantics of the programming language it
interprets. From the correctness of the symbolic interpreter, we derive a bug finder and
prove its precision and its exhaustiveness.

2.2 The Coq proof assistant

Through this thesis, we will use the Coq proof assistant as our main tool to write code,
specifications and proofs. In this section, we give a brief introduction to Coq.

2.2.1 Functional programming

The Coq proof assistant 1 features a rich purely functional programming language with
a syntax similar to OCaml2. Inductive data-types are defined using the Inductive
command, and recursive functions using the Fixpoint command. As an example, we
define a representation of natural numbers and equip it with an addition function.

Inductive Nat : Type :=
| O

| S (n : Nat).

Fixpoint add (n1 n2 : Nat) :=
match n1 with
| O => n2

| S n1 => S (add n1 n2)

end.
1https://coq.inria.fr
2https://v2.ocaml.org/index.html

9

https://coq.inria.fr
https://v2.ocaml.org/index.html

2. Preliminaries

Coq programs such as the add function can be executed in place using the Compute
command.

Compute (add (S O) (S (S O))).
(* prints S (S (S O)) *)

Coq also includes a mechanism called extraction [Let08] to generate OCaml code equiv-
alent to a Coq definition. Functions can be extracted using the Extraction command.
For example, we can extract the add function with the command Extraction add. The
result of the extraction is the following OCaml snippet:

type nat =
| O

| S of nat

let rec add n1 n2 =
match n with
| O -> n2

| S n1 -> S (add n1 n2)

2.2.2 Logic programming

To define predicates over data-types, a possibility is to use boolean functions. For
example, one could define a function is_even : Nat -> bool that checks if a natural
number is even. However, this would limit us to the expression of predicates that are
decidable (i.e. for which there exists a function that decides, in finite time, whether the
predicate holds for a given argument). We can also define potentially non-decidable
predicates using custom inference-rules. For example, the predicate is_even can be
defined with the following rules.

is_even 0
is_even n

is_even (n + 2)

In Coq, relations defined by a set of inference rules are expressed using inductive predi-
cates. As an example, the predicate is_even is defined as follows.

Inductive is_even : Nat -> Prop :=
| is_even_O : is_even O

| is_even_2_plus_n : is_even n -> is_even (S (S n)).

Instead of returning a boolean, an inductive predicate defines a family of propositions
(Prop in Coq). To prove a proposition such as is_even (S (S (S (S O)) (4 is even),
the only way is to use the inference rules is_even_O and is_even_2_plus_n. A possible
proof is is_even_2_plus_n (is_even_2_plus_n (is_even_O)).

10

2.2. The Coq proof assistant

2.2.3 Interactive proofs

Apart from defining functional programs and inductive predicates, one can also state
theorems and develop their proofs in Coq. For example, it is clear that O is neutral for
the addition over natural numbers. This simple statement can be formally stated and
proved by providing a proof script. A proof script is a sequence of commands called
tactics guiding the assistant through the proof of the desired result. For example, the
proof that add O n = n is straightforward: it suffices to unfold the definition of add O n
to obtain a trivial equality n = n. This proof can be done using the tactics simpl (to
simplify the expression) and reflexivity (to prove the remaining trivial equality).

Theorem add_zero_left :
forall (n : Nat), add O n = n.

Proof.
simpl. reflexivity.

Qed.

The proof that add n O = n requires a little more work. Indeed, this result does not
immediately follow from the definition of the add function. To prove this result, one
needs to reason by induction on n.

Theorem add_zero_right :
forall (n : Nat), add n O = n.

Proof.
induction n as [| n IH].
- simpl. reflexivity
- simpl. rewrite IH.
reflexivity.

Qed.

Longer proof scripts like the one above are never written blindly. Instead, they are
built interactively in a step-by-step fashion. After each tactic issued by the user, the
proof assistant display the current goals that remains to be proved together with the
available hypothesis. The complete sequence of interactions for the proof of theorem
add_zero_right is pictured in figure 2.1.

Providing every details of such a simple proof seems a little bit overwhelming. For-
tunately, such proofs can most of the time be automated. There exists many tactics for
automation. One of the most simple and general one is auto. For example, the two
cases in the proof of add_zero_right are simple enough to be resolved automatically
by auto.

Theorem add_zero_right :
forall (n : Nat), add n O = n.

Proof.

11

2. Preliminaries

induction n; auto.
Qed.

1

2

3

4

5

6

7

8

Figure 2.1: Step by step interactive proof of a simple theorem

2.2.4 Coinduction and lazy computations

As discussed in the previous section, we will have to model potentially infinite tree-
shaped data-structures and algorithms over them. Coq provides a mechanism called
coinduction to reason with such data-structures, and a specific type of recursive func-
tions called cofixpoints to traverse and generate infinite objects.

coinductive definitions are, in appearance, similar to inductive ones. For example, we
can define potentially infinite lists (also called streams) coinductively as follows:

CoInductive stream (A : Type) :=
| snil

| scons (x : A) (xs : stream A).

At first sight, this definition looks exactly the same as the one of (inductive) lists. The
key difference is in the interpretation of this type. Contrary to inductive types, the
elements of a coinductive types are exactly these that can be obtained by finite or
infinite applications of the constructors. In other word, the type of streams contains
all finite lists, but also the infinite lists obtained by infinite application of the scons
constructor. For example, the infinite sequence 1, 2, 3, . . . can be modeled using the

12

2.2. The Coq proof assistant

infinite stream scons 0 (scons 1 (scons 2 ...)). To define such an infinite stream, we
intuitively need recursive definitions. However, in this context, Coq fixpoints will not
be enough. Indeed, Fixpoint definitions are required to be structurally recursive on
one of their arguments to ensure termination. Such a requirement does not make much
sense if we try to produce infinite data-structures with a recursive function. Instead,
we use CoFixpoint definitions that can perform arbitrary recursive calls under the
condition that all calls are guarded by a constructor. For example, the stream of all
natural numbers starting from n can be defined as follows:

CoFixpoint naturals (n : nat) : stream nat :=
scons n (naturals (S n)).

This recursive definition is accepted by Coq even though the recursive call is performed
on a structurally increasing argument. The recursive call (naturals (S n)) is below a
constructor scons which fulfills the guardedness criterion. This strict discipline ensures
that infinite objects defined by cofixpoints can be evaluated lazily: it suffices to evaluate
the definition up to the next constructor. The process can be iterated to progressively
unfold the definition in a step-by-step fashion. The guardedness criterion ensures
that there is always a "next constructor" to punctuate the lazy evaluation of recursive
definitions.

To consume a coinductive stream, we can use a regular fixpoint. For example, we can
define a function get to access the n-th element of a stream. When the n-th element is
not defined, the function returns None. In the remainder of this thesis, we will note s[n]
for get s n.

Fixpoint get {A} (s : stream A) (n : nat) : option A :=
match n, s with
| O, scons x _ => Some x

| S n, scons _ s => get n s

| _, _ => None

end.

In Coq, the laziness of coinductive definitions is implicit. In OCaml, coinductive defi-
nitions are translated to data-structures with explicit suspensions to introduce laziness.
Suspensions are implemented using the module Lazy.t of the OCaml standard library3.
For example, the definition of coinductive streams is translated to the following OCaml
code:

type 'a stream = 'a __stream Lazy.t
and 'a __stream =
| Snil

| Scons of 'a * 'a stream

3https://v2.ocaml.org/api/Lazy.html

13

https://v2.ocaml.org/api/Lazy.html

2. Preliminaries

Cofixpoints are converted to standard recursive functions with all constructors explic-
itly guarded by the lazy keyword to delay recursive computations. For example, the
definition of the stream naturals is translated to the following OCaml code:

let rec naturals n =
lazy (Scons (n, (naturals (S n))))

Functions that are consuming streams also need to explicitly force the delayed computa-
tions using the operator Lazy.force. For example, the function get is translated to the
following OCaml code:

let rec get s n =
match n, Lazy.force s with
| O, Scons (x, _) -> Some x

| S n, Scons (_, xs) -> get s n

| _, _ -> None

14

Chapter 3
Formal foundations of
symbolic execution

To reason formally about bug-finding, we need to fix a target programming language
and properly understand its execution model. In this chapter, we formalize a simple
programming language (we call it BUG) and its formal semantic. Then, we define a sym-
bolic semantics [BB19] to formally describe what it means to symbolically execute BUG
programs. Finally, we establish a formal connection between the symbolic semantics
and the concrete semantics. This connection will be the basis to justify the correctness
of a bug finder based on symbolic execution.

3.1 BUG: a target programming language

3.1.1 Syntax

The language we focus on is a simple imperative programming languages with support
loops, conditionals, and integer arithmetic. This core language is sufficient to demon-
strate the techniques developed in the thesis. The syntax of the language is described
in figure 3.1. Note that we add an instruction fail that can interrupt the execution
of a program with an error. This instruction can be used to instrument the code with
assertions.

15

3. Formal foundations of symbolic execution

Definition 3.1 (Syntax of BUG)

Variables var ∈ V

Arithmetic aexpr ::= c ∈ Z | var

| aexpr (+ | -) aexpr

Boolean bexpr ::= true | false

| aexpr (< | =) aexpr

| bexpr (and | or) bexpr

| not bexpr

Statements stmt ::= skip

| fail

| var = expr

| stmt ; stmt

| if bexpr then stmt1 else stmt2

| while bexpr do stmt

3.1.2 Semantics

To be able to specify the correctness of a bug finder, we first need to formalize the
execution model of our target programming language. Programs are executed in a
memory M assigning integer values to every variable. A program state is a pair of a
memory and a statement to execute.

Memories M = V→ Z

States S = M× stmt

The evaluation of boolean and arithmetic expressions is formalized in a denotational
style. We write JeKM to denote the result of evaluating expression e in a memory M.

16

3.1. BUG: a target programming language

Definition 3.2 (Denotational semantics of expressions)

JxKM :=M(x), x ∈ V

JzKM := z, z ∈ Z

Je1 + e2KM := Je1KM + Je2KM

Je1 - e2KM := Je1KM − Je2KM

Je1 < e2KM := Je1KM <bool Je2K

Je1 = e2KM := Je1KM =bool Je2KM

Jb1 and b2KM := Jb1KM ∧bool Jb2KM

Jb1 or b2KM := Jb1KM ∨bool Jb2KM

Jnot bKM := ¬boolJbKM

Remark To make a clear distinction between symbolic expressions and their mathemat-
ical value, we use color codes. Symbols are represented in brown and using a mono font
while mathematical values are noted in black using the usual math font. For example,
(1 + 2) ∈ Z denotes the actual value 3 but (1 + 3) ∈ aexpr denotes the abstract syntax
tree Add (Cst 1) (Cst 2). We use the notations <bool,∧bool,∨bool,¬bool to denote the
boolean comparisons and boolean operators.

The semantics of statements is given in a small-step style as a transition relation between
program states. Given two states s1 and s2, we note s1 ↪→ s2 to express that continuing
execution from state s1 leads to successor state s2. For a memory M ∈ M, a variable
x ∈ V and a constant c ∈ Z, we noteM[x← c] the memoryMwhere x has been updated
to contain c.

Definition 3.3 (Operational semantics of BUG)

assign

⟨M,x = e⟩ ↪→ ⟨M[x← JeKM], skip⟩

seq-skip

⟨M, skip ; s⟩ ↪→ ⟨M,s⟩

seq-step
⟨M,s1⟩ ↪→ ⟨M,s2⟩

⟨M,s1 ; s3⟩ ↪→ ⟨M,s2 ; s3⟩

if-true
JbKM = true

⟨M, if b then s1 else s2⟩ ↪→ ⟨M,s1⟩

if-false
JbKM = false

⟨M, if b then s1 else s2⟩ ↪→ ⟨M,s2⟩

while-true
JbKM = true

⟨M, while b do s⟩ ↪→ ⟨M,s ; while b do s⟩

while-false
JbKM = false

⟨M, while b do s⟩ ↪→ ⟨M, skip⟩

17

3. Formal foundations of symbolic execution

We note s1 ↪→∗ s2 to say that an execution can go from s1 to s2 in zero, one, or more
steps. For convenience, we also define the set of reachable states of a program p as
follows.

Definition 3.4 (Reachable state)

Reach(p) := {s | ∃M, ⟨M,p⟩ ↪→∗ s}

3.1.3 Runtime errors in BUG

A runtime error is any situation in which the execution of a program "is stuck". Using
our semantics, we can make this intuition more formal. A stuck state is any execution
state that cannot make progress according to the semantics. We note that the instruction
skip has no successor (there is nothing to be done when executing skip) but it should
not be considered as an error. This leads to the following formal definition of stuckness:

Definition 3.5

A state ⟨M,p⟩ ∈ S is stuck (we note Stuck ⟨M,p⟩) if p ̸= skip and there exists no state s
such that ⟨M,p⟩ ↪→ s.

From this definition, we say that a program has a bug if there exists an execution leading
to a stuck state.

Definition 3.6

A program p is said to have a bug if there exists an a state s ∈ Reach(p) such that Stuck s.

This formal definition makes it very clear that, to find a bug, it suffices to expose an
initial memory configuration that leads the program to failure. Our final goal is to fully
automate this process using symbolic execution. It is important to notice that stuck
states can be identified syntactically. Indeed, the only stuck states are these where the
next instruction to be executed is fail.

Theorem 1 (Syntactic criterion for stuckness). The state ⟨M,p⟩ is stuck if and only if p is of
the form fail ; . . .

18

3.1. BUG: a target programming language

Proof. If p is of the form fail ; . . ., the state ⟨M,p⟩ is clearly stuck. It remains to
prove the left-to-right implication. We proceed by induction on p.

Case of fail Trivial as fail is already of the form fail ;

Cases of skip, if, while, or sequences prefixed with skip: These cases are trivial
since these statements are never stuck (they always have a ↪→-successor).

Case of a sequence not prefixed with skip: Suppose p = p1 ; p2 and ⟨M,p⟩ is
stuck. By induction hypothesis, we know that if p1 is stuck, it is of the form
fail or fail ; Furthermore, p1 is necessarily stuck. Indeed, if p1 had a
successor, then p1 ; p2 would also have a successor. Consequently, p1 is of the
form fail ; . . . and so is p1 ; p2.

As simple as it may seem, theorem 1 plays an important role because it provides an
effective way to detect runtime errors during the step-by-step execution of a program.

3.1.4 Formalizing the semantics in Coq

In the previous subsections, we presented the syntax and the semantics of a simple
programming language. In this subsection, we briefly present the Coq formalization
of this language. First, the abstract syntax of arithmetic and boolean expressions is
expressed by two inductive types aexpr and bexpr.

Inductive aexpr : Type :=
| Var (x : string)

| Cst (c : Z)

| Add (e1 e2 : aexpr)

| Sub (e1 e2 : aexpr).

Inductive bexpr : Type :=
| Eq (e1 e2 : aexpr)

| Lt (e1 e2 : aexpr)

| Bool (b : bool)

| And (b1 b2 : bexpr)

| Or (b1 b2 : bexpr)

| Neg (b : bexpr).

Similarly, the abstract syntax of instructions is modeled by a type stmt of program
statements.

Inductive stmt :=
| Skip

| Fail
| Assign (x : string) (e : aexpr)

| Seq (p1 p2 : stmt)

| Ite (b : bexpr) (p1 p2 : stmt)

| While (b : bexpr) (p : stmt).

19

3. Formal foundations of symbolic execution

Expressions and programs are interpreted with respect to a memory mapping variable
names to integer values so we define a type store = string → Z to represent memo-
ries. The denotation of expressions is implemented by two recursive functions aeval
and beval to evaluate arithmetic and boolean expressions respectively. To evaluate
arithmetic and boolean operators, we use their implementation provided in the Coq
standard library.

Fixpoint aeval (env : store) (e : aexpr) :=
match e with
| Var x => env x

| Cst c => c

| Add e1 e2 => aeval env e1 + aeval e2

| Sub e1 e2 => aeval env e1 - aeval e2

end.

Fixpoint beval (env : store) (b : bexpr) :=
match e with
| Eq e1 e2 => aeval env e1 =? aeval env e2

| Lt e1 e2 => aeval env e1 <? aeval env e2

| Bool b => b

| And b1 b2 => beval env b1 && aeval b2

| Or b1 b2 => beval env b1 || beval env b2

| Neg b => beval env b

end.

The inference rules of the small-step semantics are defined using an inductive predicate
step : state → state → Prop where state is the type of program states (pairs of a
memory and a program statement). Each constructor of the predicate corresponds to a
transition rule. Below is an excerpt of the actual Coq definition.

Definition state : Type := store * stmt.

Inductive step : state -> state -> Prop :=
| step_Assign env x e :

step (env, Assign x e) (update env x (aeval env e), Skip)

| step_Seq_Skip env p :

step (env, Seq Skip p) (env, p)

| step_Seq_step env1 env2 p1 p2 p3:

step (env1, p1) (env2, p2) ->

step (env1, Seq p1 p3) (env2, Seq p2 p3)

20

3.2. Symbolic execution of BUG

|

The function update used for the rule step_Assign is simply updating the content
memory of a given variable in a memory. It can be defined in a functional style as
follows:

Definition update (env : store) (x : string) (vx : Z) : store :=
fun y => if x =? y then vx else env y.

3.2 Symbolic execution of BUG

Similar to how the concrete execution model can be formalized by a concrete semantics,
symbolic execution can also be described by means of a symbolic semantics: a semantics
that describes how to symbolically execute a program. This idea is not novel and has
been investigated in multiple papers [Fra+20; BB19; Por+22]. In this section, we propose
to formalize a symbolic semantics for the language BUG in the Coq proof assistant. This
will allow us to formally prove a connection between the concrete and the symbolic
semantics.

3.2.1 Symbolic semantics

In symbolic execution, programs are executed in a symbolic memory assigning arith-
metic expressions to program variables. Symbolic execution states are triples of a path-
condition (expressed as a boolean expression), a symbolic memory, and a statement to
execute.

Symbolic memories Msym = var→ aexpr

Symbolic states Ssym = Msym × bexpr× stmt

The "rules" of symbolic execution are also described in the form of a small-step opera-
tional semantics. Given two symbolic states ŝ1 and ŝ2, we note ŝ1 ↪→sym ŝ2 to express
that it is possible to take one symbolic execution step from ŝ1 to ŝ2. To define the
symbolic semantics of the assignment instruction, we also need to define a notion of
symbolic evaluation of an expression in a symbolic memory. We use the notation JeKM̂
for the evaluation of e in a symbolic memory M̂.

21

3. Formal foundations of symbolic execution

Definition 3.7 (Symbolic Semantics of BUG expressions)

JxKsym
M :=M(x), x ∈ V

JzKsym
M := z, z ∈ Z

Je1 + e2K
sym
M := Je1K

sym
M + Je2K

sym
M

Je1 - e2K
sym
M := Je1K

sym
M - Je2K

sym
M

JbKsym
M := b, b ∈ {true, false}

Je1 < e2K
sym
M := Je1K

sym
M < Je2K

Je1 = e2K
sym
M := Je1K

sym
M = Je2K

sym
M

Jb1 and b2K
sym
M := Jb1K

sym
M and Jb2K

sym
M

Jb1 or b2K
sym
M := Jb1K

sym
M or Jb2K

sym
M

Jnot bKsym
M := not JbKsym

M

Symbolic evaluation essentially replaces free variables with their assigned expression in
the current symbolic memory, thus producing a bigger expression. As for the concrete
semantics, we implement the symbolic semantics of expressions in Coq using two
recursive functions sym_aeval and sym_beval. Symbolic memories are represented by
the type sym_store : string→ aexpr.

Fixpoint sym_aeval (env : store) (e : aexpr) :=
match e with
| Var x => env x

| Cst _ => e

| Add e1 e2 => Add (sym_aeval env e1) (sym_aeval e2)

| Sub e1 e2 => Sub (sym_aeval env e1) (sym_aeval e2)

end.

Fixpoint sym_beval (env : sym_store) (b : bexpr) :=
match e with
| Eq e1 e2 => Eq (sym_beval env e1) (sym_beval env e2)

| Lt e1 e2 => Lt (sym_beval env e1) (sym_beval env e2)

| Bool _ => e

| And b1 b2 => And (sym_beval env b1) (sym_beval b2)

| Or b1 b2 => Or (sym_beval env b1) (sym_beval env b2)

| Neg b => Neg (sym_beval env b)

end.

The transition rules from symbolic states to symbolic states closely resembles the rules
of the concrete semantics. We simply replace all operations on concrete memories by
operations on symbolic memories and collect constraints when branching instructions
are executed. However, contrary to the concrete semantics, the symbolic semantics is
non-deterministic: when a branching instruction is reached, multiple successor states are

22

3.2. Symbolic execution of BUG

possible. For example, when executing an if-then-else statement, the symbolic execution
can either continue with the then branch and assume that the condition holds, or pursue
with the else branch and assume that the condition is violated. In both cases, the current
path condition is extended with the corresponding assumption.

Definition 3.8 (Symbolic Operational Semantics of BUG)

sym-assign

⟨M,φ, x = e⟩ ↪→sym ⟨M[x← JeKsym
M], φ, skip⟩

sym-seq-skip

⟨M,φ, skip ; s⟩ ↪→sym ⟨M,φ, s⟩

sym-seq-step
⟨M,φ1, s1⟩ ↪→sym ⟨M,φ2, s2⟩

⟨M,φ1, s1 ; s3⟩ ↪→sym ⟨M,φ2, s2 ; s3⟩

sym-if-true

⟨M,φ, if b then s1 else s2⟩ ↪→sym ⟨M,φ and JbKsym
M , s1⟩

sym-if-false

⟨M,φ, if b then s1 else s2⟩ ↪→sym ⟨M,φ and Jnot bKsym
M , s2⟩

sym-while-true

⟨M,φ, while b do s⟩ ↪→sym ⟨M,φ and JbKsym
M , s ; while b do s⟩

sym-while-false

⟨M,φ, while b do s⟩ ↪→sym ⟨M,φ and Jnot bKsym
M , skip⟩

To symbolically execute a program p, we generally start the execution with the symbolic
state ⟨true, x 7→ x, p⟩ where the path condition is true (we make no assumption on
the inputs), and the symbolic memory maps every program variable to its own name
(initially, the inputs are undetermined and are treated as opaque symbols).

3.2.2 Relating concrete and symbolic states

Intuitively, a sequence of symbolic execution steps is nothing but a sequence of concrete
execution steps where the value of the input variables are left undetermined. To recover
a concrete execution from a symbolic one, we just need to fix concrete initial values
for all undetermined variables. As an example we consider the symbolic execution of

23

3. Formal foundations of symbolic execution

the simple program p = if x > 0 then x := x - 1 else x := x + 1. One possible
symbolic sequence of steps follows the then branch:

⟨true, [x 7→ x], p⟩ ⟨x > 0, [x 7→ x], x = x + 1⟩ ⟨x > 0, [x 7→ x + 1], skip⟩
sym sym

If we ignore the path conditions and we replace x with 1 in this sequence of symbolic
execution steps, we obtain the following valid concrete execution

⟨[x 7→ 1], p⟩ ⟨[x 7→ 1], x = x + 1⟩ ⟨[x 7→ 2], skip⟩

This concrete execution corresponds exactly to the execution of p with initial memory
[x 7→ 1]. Note that picking x = 0 to concretize would not lead to a valid execution
according to the concrete semantics. Indeed, the execution depicted above follows a
branch where the initial value of the variable x is supposed to be strictly greater than
0. To concretize a symbolic execution with initial values for the program variables, we
also need to make sure that the choice of values is consistent with the path conditions.

To capture the notion of concretization of symbolic states more formally, we start by
introducing a composition operator ◦ : M ×Msym → M. Given any concrete memory
M ∈ M representing a choice of initial values, and a symbolic memory M̂ ∈ Msym,
the concrete memory M ◦ M̂ is obtained from M̂ by replacing free variables with their
associated values in M.

Definition 3.9 (Composition)

M ◦ M̂ ≜ x 7→ JM̂(x)KM

Using the composition operator, we can define what it means for a concrete state to be a
valid concretization of a symbolic state. We introduce a relation s ⊑M0

ŝ (read "concrete
state s concretizes the symbolic state ŝ with choice of initial values M0" or "symbolic
state ŝ symbolizes the concrete state s through initial values M0") to denote that the
memory M0 is a consistent choice of values to concretize the symbolic state ŝ into s. In
particular, we make sure that the initial memory M0 satisfies the path condition.

Definition 3.10 (Conretization relation)

JφKM0
= true

⟨M0 ◦ M̂, p⟩ ⊑M0
⟨M̂,φ, p⟩

24

3.2. Symbolic execution of BUG

The concretization relation precisely describes how to interpret a sequence of symbolic
states as a sequence of concrete ones. Going back to our example, we have the following
valid relations:

⟨true, [x 7→ x], p⟩ ⟨x > 0, [x 7→ x], x = x + 1⟩ ⟨x > 0, [x 7→ x + 1], skip⟩

⟨[x 7→ 1], p⟩ ⟨[x 7→ 1], x = x + 1⟩ ⟨[x 7→ 2], skip⟩

sym

⊒[x 7→1]

sym

⊒[x7→1] ⊒[x 7→1]

Using the concretization relation, we can naturally define which concrete states are
virtually reached during symbolic execution. It suffices to consider the concretization
of all reachable symbolic states. We note Reachsym(p) the set of concrete states that are
explored by symbolically executing the program p.

Definition 3.11

Reachsym(p) = {s | ∃M∃ŝ, ⟨true, x 7→ x, p⟩ ↪→∗
sym ŝ∧ s ⊑M ŝ}

In the following sections, we show that the states reached by concrete and symbolic
execution coincide. In other words we have, Reachsym(p) = Reach(p). The fact that
the symbolic semantics explores only states that are concretely reachable is referred to
as soundness with respect to the concrete semantics. Dually, the fact that all states
that are concretely reachable can be reached by the symbolic semantics is referred to
as completeness. Soundness and completeness of the symbolic semantics will play a
central role in proving the precision and the exhaustiveness of a bug finder.

3.2.3 Relating concrete and symbolic evaluation

In order to prove soundness and completeness of the symbolic operational semantics,
we first need to establish a relation between symbolic and concrete evaluation of expres-
sions. In particular, we show that evaluating (concretely) an expression in a composed
memoryM ◦ M̂, is the same as first evaluating symbolically in M̂ and then evaluate the
resulting expression concretely in M.

Theorem 2 (Composition-Evaluation). For any boolean or arithmetic expression e, memory
M and symbolic memory M̂ we have JeKM◦M̂ = JJeKsym

M̂
KM

Proof. We need to cover the cases where e is an arithmetic expression or a boolean
expression. In both cases, the proof goes by induction on the structure of e. We
cover only the arithmetic case. The the boolean case follows the exact same
principles.

25

3. Formal foundations of symbolic execution

Case of a constant:
Suppose c ∈ Z, by definitions we have JcKM◦M̂ = c = JJcKsym

M̂
KM.

Case of a variable:
Suppose x ∈ V, by definitions we have JxKM◦M̂ = JM̂(x)KM = JJxKsym

M̂
KM.

Case of a binary operator:
Suppose ⋄ ∈ {+, -}, by definition we have Je1 ⋄ e2KM◦M̂ = Je1KM◦M̂ ⋄ Je2KM◦M̂.
Also, JJe1⋄ e2K

sym
M̂

KM = JJe1K
sym
M̂
⋄ Je2K

sym
M̂

KM = JJe1K
sym
M̂

KM ⋄ JJe2K
sym
M̂

KM.
By induction hypothesis, we have JJeiK

sym
M̂

KM = JeiKM◦M̂ and therefore
Je1 ⋄ e2KM◦M̂ = JJe1⋄ e2K

sym
M̂

KM.

In our language BUG, we evaluate expressions (symbolically or concretely) in two situ-
ations: when we perform a variable assignment, or when we check boolean conditions.
Theorem 2 already establish a connection between symbolic and concrete evaluation
of boolean expression. We can also relate concrete and symbolic variable assignments.
Given a variable x, an expression e, and a concrete memoryM, we can perform the con-
crete variable assignment to update M into M[x ← JeKM]. Similarly, given a symbolic
memory M̂, we can do a symbolic assignment to update M̂ into M̂[x ← JeKsym

M̂
]. Build-

ing on theorem 2, we can prove that performing a concrete assignment in a composed
memory M ◦ M̂ is the same as first performing a symbolic assignment in M̂, and then
composing.

Theorem 3 (Composition-Updates). For any expression e, memoryM and symbolic memory
M̂ we have M ◦ (M̂[x := JeKsym

M̂
]) = (M ◦ M̂)[x := JeKM◦M̂]

Proof. Let Mleft = M ◦ (M̂[x := JeKsym
M̂

]) and Mright = (M ◦ M̂)[x := JeKM◦M̂]. We
need to prove that for all y, Mleft(y) =Mright(y). We consider two cases:

If x = y
On one hand, Mleft(y) =Mleft(x) = JJeKsym

M̂
KM.

On the other hand, Mright(y) =Mright(x) = JeKM◦M̂.
By theorem 2, JJeKsym

M̂
KM = (M ◦ M̂)[x := JeKM◦M̂] end hence,Mleft(y) =Mright(y).

If x ̸= y
In that case, we have Mleft(y) = (M ◦ M̂)(y) =Mright(y).

26

3.2. Symbolic execution of BUG

3.2.4 Soundness of the symbolic semantics

The soundness theorem we want to prove simply states that every state (virtually)
reached by symbolic execution is also reached by concrete execution. Formally, we prove
that Reachsym(p) ⊆ Reach(p). This ensures that the symbolic semantics is exploring only
real executions of programs and will be the key ingredient to prove the precision of a
bug-finder.

To establish the soundness of the symbolic semantics, we use a simulation diagram
technique. We start by proving that one step of symbolic execution is simulating one
step of concrete execution. More precisely, we prove any symbolic execution step can
be concretized by replacing free variables with values that satisfy the path condition
generated during the symbolic execution. Then, we show that this result is preserved
over multiple symbolic execution steps.

First, we prove that one step of symbolic execution is simulating one step of concrete
execution in the sense of the following theorem:

Lemma 4 (Soundness over one step).

⟨φ1, M̂1, p1⟩ ↪→sym ⟨φ2, M̂2, p2⟩ Jφ2KM = true

⟨M ◦ M̂1, p1⟩ ↪→ ⟨M ◦ M̂, p2⟩

Proof. By induction on the derivation ⟨φ1, M̂1, p1⟩ ↪→sym ⟨φ2, M̂2, p2⟩. Each case
of the induction corresponds to a rule of the symbolic semantics. We prove each
case by applying the corresponding rule of the concrete semantics.

Case of an assignment:
We have ⟨φ, M̂, x = e⟩ ↪→sym ⟨φ, M̂[x := JeKsym

M], skip⟩ and JφKM = true.
We need to show ⟨M ◦ M̂, x = e⟩ ↪→ ⟨M ◦ (M̂[x := JeKsym

M]), skip⟩.
By lemma 3, it is enough to show ⟨M ◦ M̂, x = e⟩ ↪→ ⟨(M ◦ M̂)(x := JeKsym

M◦M̂), skip⟩.
This exactly matches with the concrete semantic rule for assignment.

Case of a sequence prefixed with skip:
We have ⟨φ, M̂, skip ; p⟩ ↪→sym ⟨φ, M̂, p⟩ and JMKφ = true. We need to show
⟨M ◦ M̂, skip ; p⟩ ↪→ ⟨M ◦ M̂, p⟩. This exactly matches with the concrete semantic
rule for sequences prefixed by skip.

Case of a sequence not prefixed with skip:
We have ⟨φ1, M̂1, p1 ; p3⟩ ↪→sym ⟨φ2, M̂2, p2 ; p3⟩ and ⟨φ1, M̂1, p1⟩ ↪→sym
⟨φ2, M̂2, p2⟩ and Jφ2KM = true.
By induction hypothesis we have ⟨M ◦ M̂, p1⟩ ↪→ ⟨M ◦ M̂, p2⟩.

27

3. Formal foundations of symbolic execution

Using the semantic rule for the sequence, we can conclude ⟨M ◦ M̂, p1 ; p3⟩ ↪→
⟨M ◦ M̂, p2 ;p3⟩.

Case of an "if" when the condition is supposed to be satisfied:
We have ⟨φ, M̂, if c then p1 else p2⟩ ↪→sym ⟨φ and JcKsym

M̂
, M̂, p1⟩

and Jφ and JcKsym
M̂

KM = true.
We need to show that ⟨M ◦ M̂, if c then p1 else p2⟩ ↪→ ⟨M ◦ M̂, p1⟩.
Using the first semantic rule for conditionals, it suffices to show that JcKM◦M̂ =

true. Since Jφ and JcKsym
M̂

KM = true, in particular JJcKsym
M̂

KM = true. From
lemma 2 it immediately follows that JcKM◦M̂ = true.

Case of an "if" when the condition is supposed to be violated:
We have ⟨φ, M̂, if c then p1 else p2⟩ ↪→sym ⟨φ and JcKsym

M̂
, M̂, p2⟩

and Jφ and not JcKsym
M̂

KM = true.
We need to show that ⟨M ◦ M̂, if c then p1 else p2⟩ ↪→ ⟨M ◦ M̂, p2⟩.
Using the second semantic rule for conditionals, it suffices to show that JcKM◦M̂ =

false. Since Jφ and not JcKsym
M̂

KM = true, in particular JJcKsym
M̂

KM = false.
From lemma 2 it immediately follows that JcKM◦M̂ = false.

Cases for loops:
The cases for loops are handled exactly like if-statements.

It remains to prove that theorem 4 remains true over multiple symbolic execution step.
To do this proof, we start by observing that the path conditions can only grow during the
symbolic execution (i.e., one step of symbolic execution can only add new restrictions on
the program variables). We refer to this observation as monotonicity of path constraints.

Lemma 5 (Monotonicity of path constraints). Suppose ⟨φ1, M̂1, p1⟩ ↪→sym ⟨φ2, M̂2, p2⟩. If
Jφ2KM = true for some M, then also Jφ1KM = true.

Proof. It suffices to look at all possible symbolic execution rules. The only rules
that modify the path constraints are rules for conditionals and loops. In both
cases, the current path constraint is only extended with a new conjunct.

Building on lemma 5, we can now prove that multiple steps of symbolic execution
simulate multiple steps of concrete execution.

Lemma 6 (Soundness over multiple steps).

⟨φ1, M̂1, p1⟩ ↪→∗
sym ⟨φ2, M̂2, p2⟩ Jφ2KM = true

⟨M ◦ M̂1, p1⟩ ↪→∗ ⟨M ◦ M̂, p2⟩

28

3.2. Symbolic execution of BUG

Proof. The proof goes by induction on the number n of symbolic execution steps.

Base case (0 steps):
If ⟨φ1, M̂1, p1⟩ ↪→∗

sym ⟨φ2, M̂2, p2⟩ in zero steps, then p1 = p2. By reflexivity, we
always have ⟨M ◦ M̂, p1⟩ ↪→∗ ⟨M ◦ M̂, p1⟩.

Inductive case (n+ 1 steps):
Suppose ⟨φ1, M̂1, p1⟩ ↪→∗

sym ⟨φ2, M̂2, p2⟩ ↪→sym ⟨φ3, M̂3, p3⟩ and Jφ3KM = true.
We have to show ⟨M ◦ M̂1, p1⟩ ↪→∗ ⟨M ◦ M̂3, p3⟩.
By induction, we have Jφ2K = true =⇒ ⟨M ◦ M̂1, p1⟩ ↪→∗ ⟨M ◦ M̂2, p2⟩.

Since ⟨φ2, M̂2, p2⟩ ↪→sym ⟨φ3, M̂3, p3⟩ and Jφ3KM = true, by monotonicity (5) we
have Jφ2K = true and therefore, ⟨M ◦ M̂1, p1⟩ ↪→∗ ⟨M ◦ M̂2, p2⟩. By soundness
over one step (4) we also have ⟨M ◦ M̂2, p2⟩ ↪→ ⟨M ◦ M̂3, p3⟩. By transitivity, it
follows ⟨M ◦ M̂1, p1⟩ ↪→∗ ⟨M ◦ M̂3, p3⟩.

The intuition between theorem 6 is better pictured by drawing a simulation diagram. If
we consider a symbolic execution from state ŝ1 to state ŝn, and a memory M satisfying
the path constraint of ŝn, we have the following relations (where concrete states si are
the concretization with respect to M of symbolic states ŝi):

ŝ1 ŝ2 ... ŝn

s2 s2 ... sn

sym

⊒M

sym

⊒M

sym

⊒M

In such a simulation diagram, solid edges represent relations that we initially suppose
to hold, and dotted edges represent relations that we can deduce. As a consequence of
theorem 6, we can prove that symbolic reachability subsumes concrete reachability.

Theorem 7 (Soundness for reachability). For all p, Reachsym(p) ⊆ Reach(p)

Proof. Suppose s ∈ Reachsym(p). By definition, there exists a symbolic state ŝ and
a memory M, such that ⟨true, x 7→ x, p⟩ ↪→∗

sym ŝ and s ⊑M ŝ. By theorem 6 it
follows ⟨M ◦ (x 7→ x), p1⟩ = ⟨M,p1⟩ ↪→ s. Therefore s ∈ Reach(p).

It is important to notice that the inclusion Reachsym(p) ⊆ Reach(p) only imply that the
concretization of any reachable symbolic state is concretely reachable. There exists a
valid concretization of a symbolic state only if its path condition is satisfiable. Nonethe-
less, if the satisfiability of paths-conditions is checked a posteriori, the soundness of the
symbolic semantics ensures that only true bugs can be detected by symbolic execution.

29

3. Formal foundations of symbolic execution

This fact follows immediately from the soundness theorem and can be formalized as
follows.

Corollary 8. For any program p, if a symbolic state of the form ⟨φ, M̂, fail ; . . .⟩ is in
Reachsym(p) and φ is satisfiable, then p has a bug.

3.2.5 Completeness

While soundness guarantees that a symbolic execution simulates a set of concrete ones,
we would also like to have a completeness results ensuring that all concrete executions
can be simulated. Our goal is to show that for every sequence of concrete execution
steps, there exists a similar sequence of symbolic steps. Formally, we demand that for
any sequence of concrete states s1 ↪→ s2 . . . ↪→ sn, there should exist a sequence of
symbolic states ŝ1 ↪→sym ŝ2 . . . ↪→sym ŝn and an initial memoryM such that si ⊑M ŝi for
all 1 ⩽ i ⩽ n.

Again, we use a simulation diagram technique. We start by showing that for every
concrete transition s1 ↪→ s2, if s1 concretizes ŝ1 via a memory M, then we can always
take a symbolic execution step from ŝ1 to some symbolic state ŝ2 while preserving the
concretization relation.

Lemma 9 (Completeness over one step).

s1 ⊑M ŝ1 ∧ s1 ↪→ s2

∃ŝ2, s2 ⊑M ŝ2 ∧ ŝ1 ↪→sym ŝ2

Proof. The proof goes by induction on the derivation s1 ↪→ s2. Supposing s1 =

⟨M1, p1⟩, we consider all possible derivations.

Case of skip or fail : If p1 = skip or p1 = fail, s1 does not have a successor
which contradicts the assumption s1 ↪→ s2.

Case of an assignement: If p1 = x = e, then s2 = ⟨M1[x ← JeKM1
], skip⟩. Now,

ŝ1 is necessarily of the form ⟨φ1, M̂1, p1⟩ for some φ1 and M̂1. We choose ŝ2 =

⟨φ1, M̂1[x← JeKsym
M̂1

], skip⟩.
Clearly, we have ŝ1 ↪→sym ŝ2. It remains to prove that s2 ⊑M ŝ2. By definition, it
suffices to show that Jφ1KM = true and M1[x← JeK] =M ◦ (M̂1[x← JeKsym

M̂1
]).

From our assumptions, we already know that s1 ⊑ ŝ1 so in particular Jφ1KM =

true, and M1 =M ◦ M̂1. We just need to prove that M1[x ← JeK] =M ◦ (M̂1[x ←
JeKsym

M̂1
]). This equality is established by first replacing M1 with its equivalent

30

3.2. Symbolic execution of BUG

formulation as a function of M̂1 and then applying lemma 2:

M1[x← JeKM1
] = (M ◦ M̂1)[x← JeKM◦M1

] =M ◦ (M̂1[x← JeKsym
M̂1

])

Case of an "if" when the condition is supposed to be satisfied:
Supposing p1 = if c then p2 else p3, JcKM1

= true, we have s2 = ⟨M1, p2⟩.
Further, ŝ1 is of the form ⟨φ1, M̂1, p1⟩. We choose ŝ2 = ⟨φ1 and JcKsym

M̂1
, M̂1, p2⟩.

Clearly, ŝ1 ↪→sym ŝ2. It remains to prove that s2 ⊑M ŝ2. It is enough to show that
Jφ1 and JcKsym

M̂1
KM = true.

Jφ1 and JcKsym
M̂1

KM = Jφ1KM ∧bool JJcKM̂1
KM = Jφ1KM ∧bool JcKM◦M̂1

Since s1 ⊑M ŝ1, we have Jφ1KM = true and M1 = M ◦ M̂1. It follows that
JcKM◦M̂1

= JcKM = true.

Other cases The other cases follow exactly the same principles as the case for "if"
when the condition is supposed to be satisfied.

We then prove that the concretization relation can also be preserved over multiple
concrete steps by iterating the diagram established in lemma 9.

Lemma 10 (Completeness over multiple steps).

s1 ⊑M ŝ1 ∧ s1 ↪→∗ s2

∃ŝ2, s2 ⊑M ŝ2 ∧ ŝ1 ↪→∗
sym ŝ2

Proof. The proof goes by induction on the number of concrete steps.

Base case (0 steps): Suppose s1 = s2. Then it suffices to pick ŝ2 := ŝ1 as ŝ1 ↪→∗
sym ŝ1.

Inductive case (n+ 1 steps): Suppose there exists a state s3 such that s1 ↪→∗ s3 ↪→
s2 and s1 ⊑M ŝ1. By induction hypothesis, there exists a symbolic state ŝ3 ⊒M s3

such that ŝ1 ↪→∗
sym ŝ3. Applying lemma 9 starting from ŝ3 we obtain a symbolic

state ŝ2 ⊒M s2 such that ŝ3 ↪→sym ŝ2. We obtained an appropriate symbolic
execution ŝ1 ↪→∗

sym ŝ3 ↪→sym ŝ2

31

3. Formal foundations of symbolic execution

Similar to theorem 6, the completeness theorem over multiple steps can be better visu-
alized using the following simulation diagram:

s1 s2 ... sn

ŝ1 ŝ2 ... ŝn

⊑M ⊑M ⊑M
sym sym sym

Given a concrete execution s1 ↪→ ... ←↩ sn and knowing that s1 ⊑M ŝ1, we can always
reconstruct an equivalent symbolic execution ŝ1 ↪→sym ... ↪→ ŝn. From this fact, we can
easily derive that all concretely reachable states are also symbolically reachable.

Theorem 11 (Completeness for reachability). For any program p, Reach(p) ⊆ Reachsym(p)

Proof. Let s ∈ Reach(p). By definition, there exists a memory M such that
⟨M,p⟩ ↪→∗ s. Further, it is clear that ⟨M,p⟩ ⊑M ⟨true, x 7→ x, p⟩. There-
fore, by theorem 10, we know that there exists a symbolic state ŝ such that
⟨true, x 7→ x, p⟩ ↪→∗

sym ŝ and s ⊑M ŝ. By definition of symbolic reachability, this
implies s ∈ Reachsym(p).

32

Chapter 4
Verified Implementation of a
Symbolic Interpreter

4.1 Challenges

So far, we formalized a symbolic execution model describing how to symbolically exe-
cute programs. We proved that this symbolic execution model can predict the concrete
behavior of programs. However, to symbolic execute programs, we still need to im-
plement the symbolic semantics in the form of an executable interpreter. In particular,
we want to implement this interpreter in Coq and prove that it is sound and complete
with respect to the symbolic semantics (and therefore, by transitivity, also with respect
to the concrete semantics). This means that the interpreter should cover only valid exe-
cutions of the program (soundness) but also all possible executions (completeness). In
this section, we discuss some challenges that arise when implementing such a symbolic
interpreter in Coq.

4.1.1 Loops VS termination

The first main challenge in implementing a verified symbolic interpreter is termination.
As explained before, symbolically executing programs with loops is not guaranteed
to terminate. When implementing symbolic execution engines in traditional program-
ming languages, this is not really an issue. Symbolic execution engines are typically
implemented using a collection of mutually recursive functions or a never-ending ex-
ecution loop, and the execution is interrupted manually by users. However, in Coq,
all functions are required to terminate. This requirement is enforced by a collection of
syntactic constraints on recursive definitions. If these syntactic requirements are not

33

4. Verified Implementation of a Symbolic Interpreter

met, it is also possible to provide an explicit proof of termination. Multiple tools and
libraries such as Program [Soz] and Equation [Soz10] simplify the process of defining
recursive functions with non-trivial termination proofs. Unfortunately, in the context of
symbolic execution, these tools are not really useful as it is impossible to prove termina-
tion. Nonetheless, we show in section 4.2 that lazy-execution techniques can be used to
overcome this problem and still be able to implement and verify a symbolic interpreter
in Coq.

4.1.2 Non-determinism VS exhaustiveness

Another major obstacle in the implementation of a symbolic interpreter is non-
determinism. Indeed, when a conditional instruction is reached, the execution can
continue in two ways depending on whether or not the condition is assumed to hold.
To be exhaustive, we need to make sure that the symbolic interpreter follows both
branches. Because symbolic execution can be non-terminating, one cannot simply de-
cide to first fully execute the first branch and then fully execute the second branch. If the
execution of the first branch never ends, the second branch will never be explored and
some behavior of the program might remain unexplored. A solution to this problem is
to use a breadth-first execution strategy.

4.2 A coinductive symbolic interpreter

To answer the challenges with termination and exhaustiveness, we use a lazy approach.
Our symbolic interpreter produces a lazy-evaluated, potentially endless stream of reach-
able symbolic states. We then prove that all states in the stream are indeed reachable
according to the symbolic semantics. Further, we prove that all reachable states eventu-
ally appear in the stream.

To implement the symbolic interpreter, we start by defining an expansion function
expand : Ssym → list Ssym that computes the list of all possible successors of a symbolic
state. The expansion function simply performs a case analysis on the next program state-
ment that needs to be executed and compute the successors accordingly by following
the rules of the symbolic semantics.

Fixpoint expand path mem prog :=
match prog with
| Skip => []

| Error => []

| Seq Skip p => [(path, mem, prog)]

| Seq p1 p2 =>

map

34

4.2. A coinductive symbolic interpreter

(fun '(path, mem, p1') => (path, mem, Seq p1' p2))
(expand path mem p1)

| Ite c p1 p2 => [

(And path (beval_sym mem c), mem, p1);

(And path (Neg (beval_sym mem c)), mem, p2)

]

| Loop c p => [

(And path (beval_sym mem c), mem, Seq p (Loop c p));

(And path (Neg (beval_sym mem c), mem, Skip)

]

end.

It is worth noting that the expansion function needs to be recursive because of the
sequence operator. Indeed, when a statement of the form p1 ; p2 is executed, we need to
first recursively compute all direct successors p1, and then extend each of them with the
continuation (. ; p2). In Coq, recursive functions must be structurally decreasing in one
of their arguments. This forces us to split the 3 components of the input symbolic state
(path condition, symbolic memory, and program statement) as 3 separate parameters
in order for the recursion to be structural on the program statement. As this is just an
artefact of Coq’s termination-checking mechanism, we will sometimes note expand s
the application of expand to a triple s ∈ Ssym for convenience.

It is relatively straightforward to see that the expansion function computes exactly the
↪→sym-successor of any symbolic state. We say that expand is a sound and complete
functional implementation of the relation ↪→sym.

Theorem 12 (Sound and complete expansion). For all symbolic states s1, s2 ∈ Ssym, s2 ∈
expand s1 if and only if s1 ↪→sym s2.

Proof. Let s1 = ⟨φ1, M̂1, p1⟩. The proof goes by immediate induction on the
structure of p1. For each case, we observe that all (and only) matching rules of
↪→sym are considered.

Starting from a state s, the function expand correctly computes its direct successors. To
compute all symbolic states reachable from s, we need to repeatedly computes direct
successors. However, this would generate a potentially infinite tree of symbolic states.
To enumerate all the reachable symbolic states, we compute a traversal of the tree in the
form of a infinite stream of states. To ensure that all nodes of the tree are explored, we
choose to traverse it in breadth.

We define a cofixpoint reachable that takes a list l of symbolic states as an input, and
use a breadth-first strategy to enumerate all states reachable from l.

35

4. Verified Implementation of a Symbolic Interpreter

CoFixpoint reachable l :=
match l with
| [] => snil

| s::l => scons s (reachable (l ++ expand s))

end.

Note that from one recursive call to the other, the input list is expanded on the right to
prioritize visits to states that have been generated first. This expansion strategy realize a
breadth-first traversal of the state space an plays a key role in the proof that reachable
exhaustively enumerate all reachable states.

Theorem 13 (Soundness). The stream reachable l only contains states that are ↪→sym-reachable
from l.

Proof. We prove that for any state s2 occurring at some position i of the stream,
there exists a state s1 of l that reaches s2:

∀i, ∀s2, ∀l, (reachable l)[i] = s2 =⇒ ∃s1 ∈ l, s1 ↪→∗
sym s2

The proof goes by induction on the position i of s2 in the stream (note that we
generalize over l).

Base case (i = 0): Suppose (reachable l)[0] = s2. If l is empty, the stream is empty
so there cannot be an element at position 0. If l is not-empty, the first element of
the stream is the first element of l so in particular it is reachable from l.

Inductive case: Suppose (reachable l)[i + 1] = s2 for some i. Again, l cannot be
empty so l = s :: l ′ for some state s and some list l ′. By definition reachable (s ::
l ′)[i + 1] = reachable(l ′ ++ expand s)[i]. By induction hypothesis which know
there exists a state s1 ∈ l ′ ++ expand s such that s1 ↪→∗

sym s2. If s1 ∈ l ′ then it is
also in l and therefore s2 is reachable from l. If s1 ∈ expands, by 12 we know that
s ↪→sym s1 and therefore s ↪→∗

sym s2 which proves that s2 is reachable from l.

The proof of completeness is more technical. We would like to prove that for any state
s reachable from l, swill eventually appear at some position in the stream reachable l.
Formally, this means we need to guess the exact position of s. To ease the proof, we start
by introducing a collection of auxiliary lemmas.

First of all, if we consider a state s in a list l, it is possible to predict exactly when it is
going to be visited. More precisely, we can prove that the element at position i in the
list l will occur at the i-th position of the stream reachable l.

36

4.2. A coinductive symbolic interpreter

Lemma 14. (reachable (l1 ++ [s] ++ l2)[length l1] = s

Proof. By immediate induction on the list l1.

An immediate corollary of 14 is that every state in l occurs in reachable l.

Corollary 15. For all state s ∈ l, there exists a position i such that (reachable l)[i] = s

Using this fact, we prove that for every state in the stream, its direct successors are also
in the stream.

Lemma 16. Let s1, s2 such that s1 occurs in reachable l and s1 ↪→sym s2. Then s2 also occurs
in reachable l.

Proof. Formally, we prove the following stronger result:

∀i, ∀l,∀s1, ∀s2, ((reachable l)[i] = s1∧s1 ↪→sym s2) =⇒ ∃j, (reachable l)[j] = s2

The proof is by induction on the position i of s1 in the stream.
Base case (i = 0): Suppose (reachable l)[0] = s1 and s1 ↪→sym s2. First, because
s1 is in the stream, l cannot be empty so l = s :: l ′ for some l ′. Second, by
completeness of expand, we know that s2 ∈ expand s1. and therefore expand s1 =
l1 ++ [s2] ++l2 for some lists l1, l2. We prove that s2 occurs in the stream exactly
at position 1+ length l ′ + length l1:

(reachable l)[1+ length l ′ + length l1]

= (reachable (s :: l ′))[1+ length l ′ + length l1]

= (reachable (l ′ ++ expand s)[length l ′ + length l1]

= (reachable (l ′ ++ (l1 ++ [s2] ++ l2))[length l
′ + length l1]

= (reachable ((l ′ ++ l1) ++ [s2] ++ l2))[length (l
′ ++ l1)] = s2

Inductive case: Suppose that (reachable l)[i+ 1] = s1 for some i, and s1 ↪→sym s2.
l can again not be empty so l = s :: l ′ and by definition

s1 = (reachable (s :: l ′))[i+ 1] = (reachable (l ′ ++ expand s))[i]

Then, by induction hypothesis, there exists a position j such that

s2 = (reachable (l ′ ++ expand s))[j]

By definition of reachable, we also have

(reachable (l ′ ++ expand s) = (reachable (s :: l ′))[j+ 1]

It follows that j+ 1 is the position of s2 in reachable l.

37

4. Verified Implementation of a Symbolic Interpreter

With the help of these lemmas, we can easily prove that any state reachable from l is in
the stream reachable l. The intuition of the proof is to iterate lemma 16 along a path
from l to s2.

Theorem 17 (Completeness). The stream reachable l contains all states that are ↪→sym-
reachable from l.

Proof. Suppose that s2 is reachable from l. By definition, there exists s1 ∈ l with
s1 ↪→∗

sym s2. The proof goes by induction on the number of steps from s1 to s2.

Base case (0 steps): Suppose s1 = s2. Then s2 ∈ l and by corollary 15, it has to
occur in reachable l.

Inductive case: Suppose s1 ↪→∗
sym s3 ↪→sym s2 for some s3. We have to show that

s2 occurs at some point in the stream. By induction hypothesis, we know that s3
eventually occurs. Since s2 is a direct successor of s3, lemma 16 ensures that s2
also appears in the stream.

4.3 Faithfulness to the Reference Semantics

The soundness and completeness of the symbolic semantics, combined with the sound-
ness and completeness of the reachable function, gives us a way to precisely and
exhaustively traverse the reachable states of a program. Let p be a program and s a
reachable state. We have the following chain of equivalences:

s ∈ Reach(p)

s ∈ Reachsym(p)

∃ŝ, ∃M, ⟨true, x 7→ x, p⟩ ↪→∗
sym s∧ s ⊑M ŝ

ŝ ∈ reachable [⟨true, x 7→ x, p⟩]∧ s ⊑M ŝ

Soundness + Completeness of the symbolic semantics (7, 11)

Definition of symbolic reachability

Soundness + Completeness of reachable (13, 17)

Reading this diagram from bottom to top, we know that each symbolic states generated
by the reachable function corresponds to a set of concretely reachable state. This makes

38

4.3. Faithfulness to the Reference Semantics

our symbolic interpreter a suitable basis for precise bug finding. Conversely, from top
to bottom, this diagram proves that asking whether a concrete state is reachable can
be reduced to an effective symbolic computation. This indicates that our symbolic
interpreter is suitable for exhaustive bug finding.

39

Chapter 5
Reducing The State Space

5.1 Symbolic semantics with pruning

The symbolic semantics we introduced in section 3 can be used as a foundation to
implement a precise and exhaustive bug finder: there is a bug in a program if an only if
an erroneous symbolic state with a satisfiable path-condition is eventually discovered.
However, so far, we performed the satisfiability check a posteriori. This allowed us to
implement and prove the correctness of the symbolic interpreter without referring to a
constraint solver. While this greatly strengthen the reliability of the symbolic interpreter
(its correctness does not depend on the assumption that we have a access to correct
solver), it can also lead to significative performance losses. Indeed, first generating all
reachable symbolic states and then filtering these with unsatisfiable path-conditions
introduces a lot of useless states that we could avoid exploring without sacrificing
exhaustiveness.

For example, when executing the piece of code below with the symbolic semantics de-
scribed in chapter 3, the "complicated code" section will be fully symbolically executed,
even though it is clear that it can never be reached. If the "complicated code" contains a
non-terminating loop, the symbolic execution will never terminate.

if false then

... complicated code ...

else

skip

This issue could easily be avoided if we check satisfiability during the execution and im-
mediately prune symbolic states with unsatisfiable path-conditions to avoid exploring
their successors. To support pruning of unfeasible paths, we need to slightly modify

41

5. Reducing The State Space

our symbolic semantics. We propose a semantics ↪→sym⋆ that require every generated
state to have a satisfiable path conditions. This new semantics is defined on top of of
↪→sym with a single inference rule.

Definition 5.1 (Symbolic operational semantics with pruning)

φ is satisfiable ⟨M,φ, p⟩ ↪→sym ⟨M ′, φ ′, p ′⟩
⟨M,φ, p⟩ ↪→sym⋆ ⟨M ′, φ ′, p ′⟩

By definition, every symbolic execution with pruning ŝ1 ↪→sym⋆ ... ↪→sym⋆ ŝ2 is also a
symbolic execution without pruning ŝ1 ↪→sym ... ↪→sym ŝ2 (i.e., pruning only removes
possible executions). As a consequence, the soundness of ↪→sym is preserved by ↪→sym⋆.

Theorem 18 (Soundness). Reachsym⋆(p) ⊆ Reachsym(p) ⊆ Reach(p)

Proof. By definition, every ↪→sym⋆ step is also a valid ↪→sym step.

The completeness is a little less immediate as we need to prove that we did not rule
out too many executions. Because the reachability set Reachsym consider only valid
concretization of reachable symbolic states, ruling out symbolic states with unsatisfiable
path conditions is not removing any concrete states from Reachsym.

Theorem 19 (Completeness). Reach(p) ⊆ Reachsym⋆(p)

Proof. The proof is exactly the same as 10. It suffices to see that whenever the path
condition is extended to simulate the concrete execution of a guarded statement,
the current concrete memory is a solution of the path condition. This fact was
simply ignored in the previous completeness proof.

It is interesting to see that, semantically, the two symbolic execution models ↪→sym
and ↪→sym⋆ are equivalent: they simulate exactly the same sets of concrete executions.
Nonetheless, ↪→sym⋆ is computationally more efficient: it encodes the same amount of
information but generates less "noise". While this does not make much of a difference
in theory, this has important consequences if one is to implement an efficient symbolic
interpreter. However, this efficiency gain comes at a cost. Indeed, for each execution
step, a constraint solver has to be called to decide the satisfiability of the current path
conditions. Relying on constraint solvers can be expansive. Further, constraint solvers
are not always conclusive and can fail to decide the satisfiability of a given path condi-
tion. In the next section, we discuss these issues in more details and propose a verified
implementation of the symbolic semantics with pruning.

42

5.2. Implementing the interpreter with pruning

5.2 Implementing the interpreter with pruning

To implement the semantics with pruning, we build on the interpreter without pruning.
We simply remove the unfeasible states produced by the expansion function by calling
a constraint solver. Verifying a fully featured constraint solver with a proof assistant is
a research topic in itself and goes far beyond the scope of this thesis [Arm+11]. Instead,
we use the module system of Coq to parametrize the implementation of our bug finder
by a solver. The bug finder itself is then a functor that takes a solver as an argument,
and returns a bug-finding function with its proof of correctness.

To ensure that our symbolic interpreter is correct, we need to make assumptions on the
correctness of the solver. One could for example make the assumption that the solver is
sound and complete: for every formula, it decides in finite time whether it is satisfiable or
not. Such an assumption is not realistic as, in practice, solvers can timeout and give up on
a query. Instead, we drop completeness and only require the solver to be sound: when it
produces a result, it correctly classifies the input formula as satisfiable or unsatisfiable.
However, it is still allowed to not provide a conclusive answer. We formalize this
intuition by providing an interfaceSOUND_SOLVER. A module implementing this interface
should expose a function check_sat that takes a boolean expression and can return
either SAT, UNSAT or TIMEOUT. Further, we require that check_sat returns SAT (resp.
UNSAT) only if the formula is satisfiable (resp. unsatisfiable).

Inductive solver_result :=
| SAT

| UNSAT

| TIMEOUT.

Module Type SOUND_SOLVER.
Parameter check_sat : bexpr -> solver_result.
Hypothesis check_sat_SAT:
forall (f : bexpr), check_sat f = SAT -> sat f.

Hypothesis check_sat_UNSAT:
forall (f : bexpr), check_sat f = UNSAT -> unsat f.

End SOUND_SOLVER.

To develop a symbolic interpreter parametrized by an arbitrary solver respecting the
SOUND_SOLVER interface, we use a functor MakeInterpreter. For any module Solver
implementing the interface, MakeInterpreter(Solver) is a module exposing a correct
implementation of the symbolic semantics with pruning.

Module MakeInterpreter(Solver : SOUND_SOLVER).
(* source code of the symbolic interpreter *)

End MakeInterpreter.

43

5. Reducing The State Space

The implementation of the interpreter itself builds on the implementation of the sym-
bolic semantics without pruning. To compute all the successors of a symbolic state, we
start by applying the expand function, and then we filter out the successors that have
unsatisfiable path conditions. If the solver fails to determine whether a path condition
is satisfiable or not, we conservatively keep the state. Otherwise, we risk to delete
a successor with a satisfiable path condition and therefore loose the completeness of
the symbolic interpreter. This filtering mechanism is implemented by the following
expand' function. The function filter comes from Coq standard library and performs
a list filtering: it keeps all elements of a list that satisfy a given boolean predicate.

Definition expand' s :=
filter (fun '(path, _, _) =>
match Solver.check_sat path with
| UNSAT => false

| SAT | TIMEOUT => true

end
) (expand s).

As for the symbolic interpreter without pruning, we generate a stream of all reachable
symbolic states by iterating the expand' function.

CoFixpoint reachable' l :=
match l with
| [] => snil

| s::l => scons s (reachable' (l ++ expand' s))

end.

5.3 Correctness of the interpreter with pruning

We can easily prove that the new interpreter computes all ↪→sym⋆-successors (i.e., it is
complete w.r.t. ↪→sym⋆).

Theorem 20 (Complete expansion). if s1 ↪→sym⋆ s2 then s2 ∈ expand’ s1.

Proof. Suppose s1 ↪→sym⋆ s2. By definition s2 has a satisfiable path condition and
s1 ↪→sym s2. By completeness of expand (12), s2 ∈ expand s1. Since the solver is
supposed to be sound, calling the solver on the satisfiable path condition of s2
returns either SAT or TIMEOUT. In both cases, s2 is preserved by the filtering.

Proving that the new interpreter computes only valid ↪→sym⋆-successors is however
impossible (i.e., it is not sound w.r.t. ↪→sym⋆). Indeed, because of the potential in-
completeness of solvers, some symbolic states with unsatisfiable path conditions might

44

5.3. Correctness of the interpreter with pruning

survive the filtering mechanism of the expand’ function. However, ↪→sym⋆ forbids to
generate states with unsatisfiable path conditions. Nonetheless, because expand’ only
removes states from these computed by expand, it is still sound with respect to ↪→sym.
We therefore introduce a slight dissymmetry in the correctness proof of the new inter-
preter: completeness is proven with respect to the ideal symbolic execution model with
perfect pruning, while soundness is proven with respect to the semantics without any
pruning. Both symbolic executions models are sound and complete with respect to the
concrete semantics, so this dissymmetry is not a problem in practice.

Theorem 21 (Sound expansion). if s2 ∈ expand’ s1 then s1 ↪→sym s2.

Proof. If s2 ∈ expand’ s1 then in particular, s2 ∈ expand s1. The result follows by
soundness of expandwith respect to ↪→sym (12).

The soundness and completeness proofs of the reachable functions are independent
from the implementation details of the expansion function. The only assumption that
is used in the soundness (resp. completeness) proof is that expand is a sound (resp.
complete) implementation of ↪→sym. By replacing the expansion function with expand',
we immediately obtain the following theorem:

Theorem 22 (Soundness and completeness of reachable’). The stream reachable’ l
contains all states that are ↪→sym⋆-reachable from l, and only states that are ↪→sym-reachable from
l.

As discussed, soundness (the only part of the statement) is proven with respect to the
symbolic semantics without pruning. This means that in practice, some states with
unsatisfiable path conditions could survive the pruning mechanism. How much can be
pruned depends on the underlying constraint solver.

45

Chapter 6
Deriving a Verified Bug Finder

6.1 Turning the symbolic interpreter into a bug finder

In this section, we transform the verified symbolic interpreter with pruning (presented
in chapter 5) into an automated bug finder. As the interpreter is parametrized by a
solver, the bug finder itself is a implemented as functor MakeBugFinder that takes a
solver supposed to be correct as an argument:

Module MakeBugFinder(Solver : SOUND_SOLVER).
Module Interpreter := MakeInterpreter(Solver).
...

End MakeBugFinder.

To convert the symbolic interpreter into a bug finder, the first step is to be able to detect
runtime errors during the symbolic execution. As shown in lemma 1, erroneous states
can be identified just by looking at the structure of the next instruction to be executed.
In particular, erroneous states are shown to be exactly these where the next instruction
to execute is fail. This check can be performed by traversing the structure of a program
statement recursively. The function next_is_fail takes a program statement p as an
argument and checks whether the next instruction to execute in p is fail.

Fixpoint next_is_fail p :=
match p with
| Fail => true
| Seq p _ => next_is_fail p

| _ => false

end.

47

6. Deriving a Verified Bug Finder

The function next_is_fail can naturally be applied to a symbolic state ŝ = ⟨φ, M̂, p⟩ by
calling it on the component p. Clearly, a symbolic state ŝ such that next_is_fail ŝ = true
represents a set of erroneous concrete states. This intuition is summarized in the
following theorem.

Theorem 23 (Symbolic detection of runtime errors). Let ŝ be a symbolic state, and s a
concrete state such that s ⊑M ŝ. Then, next_is_fail ŝ = true if and only if s is stuck.

Proof. Let ŝ = ⟨φ, M̂, p⟩. Since s ⊑M ŝ, by definition we have s = ⟨M ◦ M̂, p⟩. By
theorem 1, s is stuck if and only if p is of the form fail ; . . . which is exactly
what next_is_fail ŝ = next_is_fail p is testing.

Theorem 23 suggests that to detect concrete bugs, it suffices to look for erroneous
symbolic states ŝ using the function next_is_fail and then check whether there exists
at least one concrete state s ⊑M ŝ (for some memory M). Testing the existence of such
a concretization reduces to checking the satisfiability of the path condition of ŝ. If the
path condition is satisfied by some memory M then we found a concrete state s such
that s ⊑M ŝ. If the path condition is unsatisfiable, then the erroneous symbolic state ŝ
represents an empty set of concrete states and it can be ignored. This gives an effective
way to detect bugs by traversing the set of all reachable symbolic states and, for each of
them, use next_is_fail and a constraint solver to detect whether they represent a bug.

Unfortunately, if we find an erroneous symbolic state but the solver fails to decide
whether its path condition is satisfiable or not, we cannot really conclude whether there
is a bug or not. If we consider this a bug but the path condition is unsatisfiable, then it’s
a false alarm. If we ignore the error but the path condition turns out to be satisfiable,
then we missed a bug. To solve this problem, we make an explicit distinction between
two kinds of bugs reports: sure bugs and potential bugs. We define a type bug_report
to classify the symbolic states depending on whether or not they represent a bug (and
with which level of confidence).

Inductive bug_report :=
| SureBug (b : bexpr)

| PotentialBug (b : bexpr)

| NoBug.

When a bug is found, the path-condition of the corresponding bad state is also returned.
Therefore, bug reports also carry a boolean expression. We provide a function report
that takes a symbolic state ⟨φ, M̂, p⟩ as an input and produces a bug report.

48

6.1. Turning the symbolic interpreter into a bug finder

Definition report (path, mem, p) :=
if next_is_error p then
match Solver.check_sat path with
| SAT => SureBug path

| UNSAT => NoBug

| TIMEOUT => PotentialBug path

end
else NoBug

Turning our symbolic interpreter into a bug finder is as easy as applying report on
every element of the stream of reachable symbolic states.

CoFixpoint map (f : A -> B) (s : stream A) : stream B :=
match s with
| snil => snil

| scons x xs => scons (f x) (map f xs)

end.

Definition find_bugs p :=
map report (reachable' [(Bool true, (fun x => Var x), p)]).

The function find_bugs takes a program p, generate all symbolic states reachable from
the initial state ⟨true, x 7→ x, p⟩ (i.e., the initial path condition is set to be true and the
symbolic memory is binding each program variable to its own name) and transform
this stream of states into a stream of bug reports. Using the correctness of our symbolic
interpreter, we can prove that the function report_bugs reports all and only bugs: it is
a precise and exhaustive bug finder.

Theorem 24 (Precision of the bug finder). Let p be a program, and r be a bug report in the
stream find_bugs(p). Then we have the following two properties:

1. if r = SureBug(φ), then p has a bug

2. if r = PotentialBug(φ) and φ is satisfiable, then p has a bug

Additionally, in both cases, executing p from any memory satisfying φ triggers the bug.

Proof. SureBug(φ) or PotentialBug(φ) occurs in the stream find_bugs p only if
an erroneous symbolic state ŝ occurs in the stream reachable [⟨true, x 7→ x, p⟩]. By
soundness of reachable’ (22), ŝ is reachable according to the symbolic semantics.
By soundness of the symbolic semantics and by theorem 23 it follows that every
memoryM satisfying φ leads to a runtime error in p. Additionally, in the case of
SureBug(φ), we know thatφ is satisfiable (because of the successfull satisfiability
check) so there is at least one initial memory leading p to failure.

49

6. Deriving a Verified Bug Finder

Theorem 25 (Exhaustiveness of the bug finder). Let p be a program, and suppose that p
has a bug triggered by the input memory M. Then there exists a bug report r in the stream
find_bugs(p) satisfying one of the two following properties:

1. Either r = SureBug(φ) and M satisfies φ

2. Or r = PotentialBug(φ) and M satisfies φ

Proof. Suppose that executing p from initial memory M leads to a runtime error.
By completeness of the symbolic semantics and by 23, there exists a symbolic
execution leading to a erroneous symbolic states ŝ such that M satisfies the path
condition φ of ŝ. By completeness of reachable (17), ŝ is necessarily in the
stream reachable [⟨true, x 7→ x, p⟩]. Either the solver successfully detects that φ
is satisfiable, in which case find_bugs will contain SureBug(φ). Or, the solver
fails to determine the satisfiability of φ. In this case find_bugs will contain
PotentialBug(φ).

An immediate corollary of the exhaustiveness is that our bug finder can sometimes
be used to prove the absence of bugs! Indeed, if the stream of bug reports is finite
(typically, when the analyzed program has no loops) and no bug is reported (i.e.,
the stream contains only NoBug reports), then the program is necessarily free of bugs
(otherwise, we would have found the bug before reaching the end of the stream).

Corollary 26 (Freedom of runtime errors). Suppose that the stream find_bugs(p) contains
only NoBug, then p is free of runtime errors.

6.2 Bug finding under assumptions

If a program makes assumptions on the inputs (for example, by requiring a pre-condition
to be satisfied in order to execute a function), crashing the program by running it with
inputs that violate the assumptions should not be considered a bug. In practice, we are
more interested in finding bugs under a certain set of assumptions ψ. To denote the set
of states that can be reached from an initial memory that satisfies a precondition ψ, we
introduce the a conditional reachability set Reachψ(p):

Definition 6.1 (Conditional reachability)

Reachψ(p) = {s | ∃M, JψKM = true ∧ ⟨M,p⟩ ↪→∗ s}

Similar to Reach and Reachsym, we can define a symbolic variant of conditional reacha-
bility. To model conditional symbolic reachability, we look at symbolic states that are
reachable when starting with φ as an initial path condition (instead of true).

50

6.2. Bug finding under assumptions

Definition 6.2 (Conditional symbolic reachability)

Reachψsym(p) = {s | ∃ŝ, ∃M, ⟨ψ, x 7→ x, p⟩ ↪→∗
sym ŝ∧ s ⊑M ŝ}

Without much surprise, conditional reachability coincides with symbolic conditional
reachability as stated in the following theorem:

Theorem 27. Reachψ(p) = Reachψsym(p)

Proof. Immediate corollary of the soundness and completeness of the symbolic
semantics (6, 10).

To compute the symbolic states that are reachable under assumptionsψ it suffices to call
the function reachable' from the initial state ⟨ψ, x 7→ x, p⟩ instead of ⟨true, x 7→ x, p⟩.
We can therefore easily extend the bug finder find_bugs to support assumptions as
follows:

Definition find_bugs assumptions p :=
map report (reachable' [(assumptions, fun x => Var x, p)]).

By correctness of the function reachable' (22) and thanks to theorem 27, the preci-
sion and exhaustiveness results established for the bug finder without assumptions
(theorems 24 and 25) immediately transfer to the bug finder with assumptions.

Theorem 28 (Precision of the bug finder with assumptions). Let p a program, ψ a formula
representing a set of assumptions, and r a bug report in the stream bug_reports’ ψ p. Then
we have the following two properties:

1. if r = SureBug(φ), then p has a bug triggered for some inputs satisfying the assumptions
ψ

2. if r = PotentialBug(φ) and φ is satisfiable, then p has a bug triggered for some inputs
satisfying the assumptions ψ

Additionally, in both cases, executing p from any memory satisfying φ triggers the bug.

Theorem 29 (Exhaustiveness of the bug finder with assumptions). Let p be a program, ψ
be a set of assumptions, and suppose M is a bug-triggering input memory satisfying ψ. Then
there exists a bug report r in the stream find_bugs’ ψ p satisfying one of the two following
properties:

1. Either r = SureBug(φ) and M satisfies φ

2. Or r = PotentialBug(φ) and M satisfies φ

51

6. Deriving a Verified Bug Finder

Corollary 30 (Freedom of runtime errors under assumptions). Suppose that the stream
find_bugs’ ψ p is finite and contains only NoBug, then p is free of runtime errors if executed
with inputs satisfying ψ.

6.3 Extraction from Coq to OCaml

6.3.1 Choosing a constraint solver

In the previous section, we implemented and verified in Coq a bug finder based on sym-
bolic execution. This bug finder is presented as a functor parametrized by a constraint
solver supposed to be sound. To execute the bug finder, we need to first instantiate
the functor with a constraint solver of our choice. To do so, a first option would be to
develop a constraint solver in Coq, prove its soundness formally, and instantiate the bug
finder in Coq. Then, we can either execute the bug finder directly inside of Coq using
the Coq interpreter, or rely on the extraction mechanism to compile the sources of the
bug finder to a standalone OCaml executable (see figure 6.1).

Verified
Solver Bug Finder

Bug Finder

extraction

The bug finder is correct

The bug finder is correctVerified
Solver

Solver

Figure 6.1: Extraction of a fully verified bug finder

Another option is to rely on the extraction mechanism of Coq to compile the sources
of the bug finder to a standalone OCaml library. In that case, we can extract the entire
MakeBugFinder functor to an equivalent OCaml functor. The soundness hypothesis
on the solver is erased during the extraction because the type system of OCaml is not
powerful enough to express formal specifications and formal requirements on mod-
ules.Once the functor is extracted, we can therefore choose an arbitrary (unverified)
solver (see figure 6.2). This second method has the drawback that it sacrifices a little
bit of reliability. Nonetheless, provided the chosen solver is correct, the core algorithm

52

6.3. Extraction from Coq to OCaml

of the bug finder is still guaranteed to be correct. This is a major improvement in com-
parisons with existing unverified tools. Further, our design still allows to recover full
correctness if some time is dedicated to verifying a constraint solver in Coq.

Solver Bug Finder

Bug Finder

extraction

For any correct solver
the bug finder is correct

For any correct solver
the bug finder is correct

Solver
(trusted)

Figure 6.2: Extraction of a verified bug finder parametrized by a trusted solver

Implementing and verifying a fully featured constraint solver in Coq is a research topic
in itself and goes far beyond the scope of a master’s thesis. Therefore, we chose to only
extract the functor MakeBugFinder using the following command:

Extraction "bugfinder.ml" MakeBugFinder.

This generates an OCaml file bugfinder.ml containing the OCaml translation of the
functor MakeBugFinder.

6.3.2 The OCaml Front-end of the bug finder

Once the MakeBugFinder is extracted to OCaml, we still need to develop a user interface
to communicate with the verified bug-finding algorithm. More specifically, we need to
pick a constraint solver, develop a parser for programs, and a pretty printer to display
the results of the bug finder. We develop these features in plain OCaml.

Constraint solver. We choose Z3 as a constraint solver [DB08]. To instantiate the
functor MakeBugFinder we start by wrapping the OCaml API of Z3 into a module
Solver that implements the module signature SOUND_SOLVER. We can then apply the
functor MakeBugFinder to the module Solver to obtain a module BugFinder. The
module BugFinder exposes the function find_bugs' that can be called on any BUG
program to generate a stream of bug reports.

53

6. Deriving a Verified Bug Finder

open Z3
module Solver : SOUND_SOLVER = struct
...

end
module BugFinder = MakeBugFinder(Solver)

To obtain better performance, our implementation of the module Solver uses a cache
to store the results of satisfiability queries. If the same query needs to be solved twice,
Z3 will therefore be called only once.

Parsing. To read programs from files, we implemented a simple parser that accepts
programs expressed in a concrete syntax close to the abstract syntax of BUG presented
in figure 3.1. We extend the syntax of BUG with the macros assume and assert to
instrument programs. The command assume can only be used at the beginning of a
file and is used to indicate under which assumptions the symbolic execution should be
performed (see 6.2). The command assert cond is used to check a boolean condition
at runtime and it is just an alias for the snippet if cond then skip else fail. Given
a source file, our parser returns a pair (assumptions, program) of the assumption (as
a boolean expression) and the abstract syntax tree of the program.

Pretty printing. Once a program is parsed, we use the function

BugFinder.find_bugs assumptions program

to produce a lazy stream of bug reports. Then, we traverse the stream and display
appropriate error messages if negative bug reports are found. For every displayed error
message, the precision theorem 28 ensures that it corresponds to a real bug. Because
the stream can be infinite, traversing the stream might never terminates. Nonetheless,
if there is a bug in the program, the exhaustiveness theorem 29 ensures that an error
message will eventually be displayed if we let the bug finder run long enough. Further,
if the stream is exhausted in finite time and no bugs were displayed, the corollary 30
ensures that the program under test is free of bugs (under the given assumptions).

6.3.3 Comments on the Coq development

In the end, the complete development of our verified bug finder is composed of approx-
imately 1200 lines of Coq code and proofs and 400 lines of OCaml code.

54

6.4. Evaluation

Component Lines Language

Source code and proofs 1219 Coq

Extracted code 200 OCaml

Front-end (parser + Z3 + printer) 189 OCaml

As described in the above table, once extracted, the code of the bug finder only represents
200 of the 1200 lines of Coq. The remaining 1000 lines contains the formalization of
the target programming language, its 3 formal semantics (concrete, symbolic, symbolic
+ pruning), and all theorems and proofs discussed in this thesis. The list of formally
proven theorems also includes many technical lemmas we did not not discuss in this
thesis but were required to prove the correctness of the bug finder (most notably, lemmas
on stream functions).

6.4 Evaluation

We evaluate our verified bug finder on example programs to demonstrate its capabilities
and its current limitations.

6.4.1 Sample programs

GCD. The first program we test is an algorithm to compute the GCD of two positive
integers a and b using iterative subtraction. At every iteration of the algorithm, we
check that the variant a + b is strictly decreasing to ensure termination. We give two
versions of the algorithm: a correct one (on the left), and an incorrect one (on the right).
The incorrect version has a bug leading to potential non-termination (indicated in red).
The purpose of this sample is to demonstrate the ability for our bug finder to find bugs
in arithmetic programs.
assume a > 0

assume b > 0

while (a != b) {

old_a = a

old_b = b

if (a > b) {

a = a - b

} else {

b = b - a

}

assert (a + b < old_a + old_b)

}

assume a > 0

assume b > 0

while (a != b) {

old_a = a

old_b = b

if (a > b) {

a = a - b

} else {

b = b + a

}

assert (a + b < old_a + old_b)

}

55

6. Deriving a Verified Bug Finder

Bounded loops. The second sample program tests the ability of our bug finder to
prove the absence of bugs for programs with bounded loops. The program on the left
can crash when the bound k is at least 100. If we restrict k to be smaller, the program is
bug free.
assume 0 <= k

assume 0 <= x

while x < k {

x = x + 1

assert (x <= 100)

}

assume 0 <= k <= 100

assume 0 <= x

while x < k {

x = x + 1

assert (x <= 100)

}

Deep bugs. Finally, the last sample program we use exercises the ability for our bug
finder to find deep bugs. The program simply iterate a variable x from 0 to k and then
crashes. In the evaluation, we run the bug finder with k ∈ {100, 500, 1000}.

x = 0

while true {

x = x + 1

assert (x < 500)

}

6.4.2 Results

For each program, we run two versions of the bug finder: one with on-the-fly pruning
of infeasible paths (this corresponds to the symbolic semantics presented in 5) and one
which only check the feasibility of paths leading to errors (this corresponds to the initial
semantics 3). In each case, we measure the runtime in seconds as well as the number of
SMT queries sent to Z3. Because the stream of bug reports produced by the bug finder
can be infinite, we set a timeout after processing the first 5000 bug reports (we note TO
in the table). The evaluation is performed on a MacBook PRO with an Apple M1 Pro
processor and 16GB of ram. The results are gathered in table 6.3.

For the GCD sample program, both versions of the bug finder find the bug instantly.
For the bounded loop sample, the bug finder without pruning fails to prove the absence
of bugs. This is because it cannot detect that the program exits the bounded loop after
100 iterations. However, the bug finder with on-the-fly pruning proves the absence of
bug in less than a second.

The last sample gives more surprising results. Indeed, for k = 100 and k = 500, the
version without pruning finds the bug significantly faster than the version with on-
the-fly pruning. This can be explained because finding the bug essentially boils down
to concretely executing the program for the first k iterations until the bug is hit. As a

56

6.4. Evaluation

Program Expected Pruning Runtime Queries Result

GCD bug
no < 0.01 2 bug found

yes < 0.01 10 bug found

Bounded loops no bugs
no 32 714 TO

yes 0.7 402 proved

Deep bugs k = 100 bug
no 0.05 100 bug found

yes 0.2 401 bug found

Deep bugs k = 500 bug
no 4 500 bug found

yes 17 2001 bug found

Deep bugs k = 1000 bug
no 12 714 TO

yes 135 4001 TO

Figure 6.3: Evaluation of the verified bug finder on sample programs

result, the bug finder without pruning only sends k queries to the solver (once at every
iteration of the loop, to check whether the assertion holds). In contrast, the bug finder
with pruning sends a query to the solver for every intermediate execution step. This
results in a significant time overhead. For k = 1000, both versions of the bug finders fail
to see the bug after processing the first 5000 states generated by the symbolic interpreter.
This is due to the fact that we use a naive breadth-first strategy and hence, the number
of states to explore before reaching deep states is high. To overcome these limitations,
we could explore two solutions:

1. A first solution would be to develop a symbolic semantics with selective pruning.
Instead of testing the satisfiability of the path condition for every generated state,
we could develop heuristics to decide when to call the solver. This would result in
a symbolic semantics that is still sound and complete but with an implementation
that generates less SMT queries.

2. Another solution is to replace the breadth-first search strategy with a more effi-
cient strategy that still guarantees exhaustiveness. For example, depth-first search
with iterative deepening. This requires more work and in particular more proof
engineering as one would need to verify the underlying datastructures used in the
search algorithm.

57

Chapter 7
Related Work

7.1 Verified program provers

Proof assistants have been successfully applied to verify the correctness of automated
program provers. For example, Verasco is a static analyzer for C programs based on
abstract interpretation [Jou+15]. It can prove freedom of runtime-errors and it is entirely
verified using the Coq proof assistant.

Other verification methods such as model-checking for temporal properties have been
verified using a proof assistant. For example, the CAVA [Esp+13; BL18] model checker is
verified using the proof assistant Isabelle/HOL and extracted to efficient ML code using
the refinement framework of Isabelle/HOL. CAVA accepts specifications expressed in
Linear Temporal Logic and systems expressed in the modeling language Promela, and
can automatically verify that a system respect its specification.

Our work use the same technique than CAVA and Verasco: we implement a verification
tool in a proof assistant and develop a formal proof of its correctness. However, while
Verasco and CAVA focus on proving correctness of programs using abstract interpreta-
tion and LTL model-checking, we focus on automatically showing the presence of bugs
using symbolic execution. Additionally, CAVA can only verify finite-state models of
programs.

7.2 Formal foundations of bug-finding

Until recently, formal foundations of bug-finding tools received less attention than
automated provers. In this section, we present recent work going in the direction

59

7. Related Work

of proving the correctness of bug-finding tools and compare our work to these other
approaches.

Incorrectness Logic In the paper Incorrectness Logic [OHe19], Peter W. O’Hearn was
the first to propose a program logic to reason about incorrect behavior of programs
rather than proving their correctness using the more traditional Hoare logic. This work
layed the foundations to design formal systems dedicated to proving the presence of
bugs rather than proving their absence.

Formal foundations of symbolic execution The semantic foundations of symbolic exe-
cution have already been studied. For example, Boer and Bonsangue proposed the first
formal framework to formally reason about symbolic execution as just another seman-
tics to execute programs [BB19; BB21; Boe+20]. In a sequence of papers, they proposed
different symbolic semantics to justify the correctness of symbolic execution for various
programming languages with different features (objects, recursion, parallelism, etc).
However, to the best of our knowledge, their theoretical framework is not mechanized
in a proof assistant.

In [Fra+20], Fragoso et al propose to develop a generic platform for symbolic execution
of programs based on solid semantic foundations. They proved, manually, that their
symbolic execution engine is correct with respect to the semantics of a core programming
language. Their platform, called Gillian offers bug-finding features. However, their
tool is not mechanized in a proof assistant and its correctness proof is not machine-
checked.

Going on step further, in [Por+22], Pornchroenwase et al propose to formally verify an
executable symbolic evaluator for a subset of the Scheme language. Their symbolic
engine called Leanette, is mechanized using the Lean proof assistant1 and is proven to
be correct. In their approach, they propose a big-step symbolic semantics that execute
programs until termination and collect all possible program paths. This restrict their
work to the analysis of terminating programs. Instead, we propose to formally verify in
Coq a symbolic interpreter based on a small-step operational semantics. Our interpreter
can therefore provide insightful information on non-terminating programs which makes
it more suitable for bug-finding tasks.

In [Keu+22a], Keuchel et al mechanized a symbolic execution engine in Coq to automat-
ically discharge obligations in Coq proofs involving reasoning about programs. Their
approach focuses on symbolic execution-based program verifiers that are embedded
within a proof assistant. In contrast our approach focus on the verification of a stan-

1https://lean-lang.org

60

https://lean-lang.org

7.2. Formal foundations of bug-finding

dalone symbolic execution engine dedicated to bug finding, and it can be used outside
of the proof assistant.

Verified property-based testing Property Based Testing (PBT) [CH00] is another au-
tomated testing method. It automatically generates inputs to test whether a program
is conforming to the a given specification. In [Par+15], Paraskevopoulou et al propose
to implement a PBT framework offering strong formal guarantees. Their framework,
called QuickChick, is implemented as a library in the Coq proof assistant. Given a spec-
ification that a Coq function should satisfy, their library provides trustworthy inputs
generators to automatically test whether the specification is satisfied. This approach
allows to reliably test code written in Coq but it cannot be applied outside of the context
of the proof assistant.

61

Chapter 8
Conclusion

Automated testing is an important method to quickly evaluate the robustness or the
correctness of large software packages. Nonetheless, without formal foundations, test-
ing only provides relatively weak guarantees. If an automated testing tool finds a bug,
it might be a false alarm. If it does not find any bug, it does not necessarily mean that
the analyzed program is free of bugs. In this thesis, we proposed to formally verify the
correctness of an automated bug finder based on symbolic execution. We developed a
symbolic interpreter for a small programming language and derived an automatic bug
finder. Using the Coq proof assistant, we then carried the complete proof of correctness
of this automated bug finding tool. In particular, we proved that our symbolic inter-
preter is faithful to the formal semantics of our target programming language. This later
allowed us to prove that our bug finder is precise and exhaustive: it finds all and only
real bugs of the analyzed programs. Further, since exhaustiveness has been formally
proven, an interesting side effect is that it can be used to prove the absence of bugs on
programs without loops (or programs with bounded loops with a static bound).

Future work. Our verified bug finder is a prototype and our target programming
language is not realistic (it does not support functions, arrays, data-structures, etc).
Nonetheless, our prototype is functional and it can be used to find bugs (or prove the
absence of them) in sample programs. In future work, we hope to extend the principles
developed in this thesis to more realistic programming languages whose semantics have
already been formalized in the Coq proof assistant (for example C or JavaScript [Ler09;
Bod+14]). For our approach to scale to the analysis of realistic programming languages,
we anticipate multiple challenges. First, we will need to design new types of symbolic
semantics to capture the features of modern programming languages. Further, these
new symbolic semantics should be easily implementable in the form of an efficient

63

8. Conclusion

symbolic interpreter. In particular, it is known that simplifying path conditions on-
the-fly before sending them to the constraint solver can greatly reduce the runtime of
symbolic verification tools [Cor14]. Verifying symbolic interpreters that supports such
optimizations is a interesting research direction. Another important challenge is the
design and the verification of efficient data-structures and algorithms for exhaustively
traversing the search space generated by symbolic interpreters. The automated testing
literature abounds with search heuristics empirically known to be efficient for bug-
finding by symbolic execution [GKS05; GLM08; He+21]. However, relying on heuristics
only sometimes ensures the exhaustiveness of the search for bugs. It could be interesting
to study what can be done to turn existing search heuristics into provably exhaustive
search algorithms and implement these new algorithms in Coq.

64

Bibliography

[Arm+11] Mickaël Armand et al. “Verifying SAT and SMT in Coq for a fully automated
decision procedure”. In: (Aug. 2011).

[Bar+11] Clark W. Barrett et al. “CVC4”. In: Computer Aided Verification - 23rd Interna-
tional Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings.
Ed. by Ganesh Gopalakrishnan and Shaz Qadeer. Vol. 6806. Lecture Notes
in Computer Science. Springer, 2011, pp. 171–177. doi: 10.1007/978-3-
642-22110-1_14. url: https://doi.org/10.1007/978-3-642-22110-
1%5C_14.

[Bau+21] Patrick Baudin et al. “The Dogged Pursuit of Bug-Free C Programs: The
Frama-C Software Analysis Platform”. In: Commun. ACM 64.8 (July 2021),
pp. 56–68. issn: 0001-0782. doi: 10.1145/3470569. url: https://doi.org/
10.1145/3470569.

[BB19] Frank S. de Boer and Marcello M. Bonsangue. “On the Nature of Symbolic
Execution”. In: Formal Methods - The Next 30 Years - Third World Congress,
FM 2019, Proceedings. Ed. by Maurice H. ter Beek, Annabelle McIver, and
José N. Oliveira. Vol. 11800. Lecture Notes in Computer Science. Springer,
2019, pp. 64–80. doi: 10.1007/978- 3- 030- 30942- 8_6. url: https:
//doi.org/10.1007/978-3-030-30942-8%5C_6.

[BB21] Frank S. de Boer and Marcello Bonsangue. “Symbolic execution formally
explained”. In: Formal Aspects of Computing 33.4 (2021), pp. 617–636. doi:
10.1007/s00165-020-00527-y. url: https://doi.org/10.1007/s00165-
020-00527-y.

[Bie+09] Armin Biere et al. “Bounded model checking.” In: Handbook of satisfiability
185.99 (2009), pp. 457–481.

[BL18] Julian Brunner and Peter Lammich. “Formal Verification of an Executable
LTL Model Checker with Partial Order Reduction”. In: J. Autom. Reason. 60.1
(Jan. 2018), pp. 3–21. issn: 0168-7433. doi: 10.1007/s10817-017-9418-4.
url: https://doi.org/10.1007/s10817-017-9418-4.

65

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1%5C_14
https://doi.org/10.1007/978-3-642-22110-1%5C_14
https://doi.org/10.1145/3470569
https://doi.org/10.1145/3470569
https://doi.org/10.1145/3470569
https://doi.org/10.1007/978-3-030-30942-8_6
https://doi.org/10.1007/978-3-030-30942-8%5C_6
https://doi.org/10.1007/978-3-030-30942-8%5C_6
https://doi.org/10.1007/s00165-020-00527-y
https://doi.org/10.1007/s00165-020-00527-y
https://doi.org/10.1007/s00165-020-00527-y
https://doi.org/10.1007/s10817-017-9418-4
https://doi.org/10.1007/s10817-017-9418-4

Bibliography

[Bla+03] B. Blanchet et al. “A Static Analyzer for Large Safety-Critical Software”. In:
Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation (PLDI’03). San Diego, California, USA: ACM
Press, June 2003, pp. 196–207.

[Bod+14] Martin Bodin et al. “A Trusted Mechanised JavaScript Specification”. In:
SIGPLAN Not. 49.1 (Jan. 2014), pp. 87–100. issn: 0362-1340. doi: 10.1145/
2578855.2535876. url: https://doi.org/10.1145/2578855.2535876.

[Boe+20] Frank S de Boer et al. “SymPaths: Symbolic execution meets partial order
reduction”. In: Deductive Software Verification: Future Perspectives: Reflections
on the Occasion of 20 Years of KeY (2020), pp. 313–338.

[Bou+09] Thomas Bouton et al. “veriT: An Open, Trustable and Efficient SMT-Solver”.
In: Automated Deduction – CADE-22. Ed. by Renate A. Schmidt. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2009, pp. 151–156.

[Bun+21] Joshua Bundt et al. “Evaluating Synthetic Bugs”. In: ASIA CCS ’21: ACM
Asia Conference on Computer and Communications Security. Ed. by Jiannong
Cao et al. ACM, 2021. doi: 10.1145/3433210.3453096. url: https://doi.
org/10.1145/3433210.3453096.

[CC77] P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of
Fixpoints”. In: Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM Press,
1977, pp. 238–252.

[CES09] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. “Model Check-
ing: Algorithmic Verification and Debugging”. In: Commun. ACM 52.11
(Nov. 2009), pp. 74–84. issn: 0001-0782. doi: 10.1145/1592761.1592781.
url: https://doi.org/10.1145/1592761.1592781.

[CH00] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs”. In: SIGPLAN Not. 35.9 (Sept. 2000),
pp. 268–279. issn: 0362-1340. doi: 10.1145/357766.351266. url: https:
//doi.org/10.1145/357766.351266.

[Cor] Arthur Correnson. A la recherche de tous les vrais bugs – Vérification formalle
d’un détecteur de bugs automatique. To appear at JFLA 2024.

[Cor14] Loic Correnson. “Qed. Computing What Remains to Be Proved”. In: NASA
Formal Methods. Ed. by Julia M. Badger and Kristin Yvonne Rozier. Springer
International Publishing, 2014, pp. 215–229. isbn: 978-3-319-06200-6.

[CS23] Arthur Correnson and Dominic Steinhöfel. “Engineering a Formally Veri-
fied Automated Bug Finder”. In: Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering. ESEC/FSE 2023. San Francisco, CA, USA: Association
for Computing Machinery, 2023, pp. 1165–1176. isbn: 9798400703270. doi:

66

https://doi.org/10.1145/2578855.2535876
https://doi.org/10.1145/2578855.2535876
https://doi.org/10.1145/2578855.2535876
https://doi.org/10.1145/3433210.3453096
https://doi.org/10.1145/3433210.3453096
https://doi.org/10.1145/3433210.3453096
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/357766.351266

Bibliography

10.1145/3611643.3616290. url: https://doi.org/10.1145/3611643.
3616290.

[DB08] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”.
In: Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems.
TACAS’08/ETAPS’08. Budapest, Hungary: Springer-Verlag, 2008, pp. 337–
340. isbn: 3540787992.

[Dĳ75] Edsger W. Dĳkstra. “Guarded Commands, Nondeterminacy and Formal
Derivation of Programs”. In: Commun. ACM 18.8 (Aug. 1975), pp. 453–457.
issn: 0001-0782. doi: 10.1145/360933.360975. url: https://doi.org/10.
1145/360933.360975.

[Esp+13] Javier Esparza et al. “A Fully Verified Executable LTL Model Checker”. In:
Computer Aided Verification (CAV 2013). Ed. by N. Sharygina and H. Veith.
Vol. 8044. 2013, pp. 463–478.

[Fio+20] Andrea Fioraldi et al. “AFL++: Combining Incremental Steps of Fuzzing
Research”. In: 14th USENIX Workshop on Offensive Technologies. Ed. by Yuval
Yarom and Sarah Zennou. USENIX Association, 2020. url: https://www.
usenix.org/conference/woot20/presentation/fioraldi.

[Fra+20] José Fragoso Santos et al. “Gillian, Part i: A Multi-Language Platform for
Symbolic Execution”. In: Proceedings of the 41st ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. PLDI 2020. Lon-
don, UK: Association for Computing Machinery, 2020, pp. 927–942. isbn:
9781450376136. doi: 10.1145/3385412.3386014. url: https://doi.org/
10.1145/3385412.3386014.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed Auto-
mated Random Testing”. In: Proceedings of the ACM SIGPLAN 2005 Confer-
ence on Programming Language Design and Implementation (PLDI’05). Ed. by
Vivek Sarkar and Mary W. Hall. ACM, 2005, pp. 213–223. doi: 10.1145/
1065010.1065036. url: https://doi.org/10.1145/1065010.1065036.

[GLM08] Patrice Godefroid, Michael Y. Levin, and David Molnar. “Automated White-
box Fuzz Testing”. In: Nov. 2008.

[God05] Patrice Godefroid. “The Soundness of Bugs is What Matters (Position State-
ment)”. In: PLDI’05 Workshop on the Evaluation of Software Defect Detec-
tion Tools (BUGS’05), Proceedings. 2005. url: https://patricegodefroid.
github.io/public_psfiles/bugs2005.pdf.

[He+21] Jingxuan He et al. “Learning to Explore Paths for Symbolic Execution”. In:
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security. CCS ’21. Virtual Event, Republic of Korea: Association
for Computing Machinery, 2021, pp. 2526–2540. isbn: 9781450384544. doi:
10.1145/3460120.3484813. url: https://doi.org/10.1145/3460120.
3484813.

67

https://doi.org/10.1145/3611643.3616290
https://doi.org/10.1145/3611643.3616290
https://doi.org/10.1145/3611643.3616290
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://patricegodefroid.github.io/public_psfiles/bugs2005.pdf
https://patricegodefroid.github.io/public_psfiles/bugs2005.pdf
https://doi.org/10.1145/3460120.3484813
https://doi.org/10.1145/3460120.3484813
https://doi.org/10.1145/3460120.3484813

Bibliography

[Jou+15] Jacques-Henri Jourdan et al. “A Formally-Verified C Static Analyzer”. In:
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL’15). Ed. by Sriram K. Rajamani and
David Walker. ACM, 2015, pp. 247–259. doi: 10.1145/2676726.2676966.
url: https://doi.org/10.1145/2676726.2676966.

[Keu+22a] Steven Keuchel et al. “Verified Symbolic Execution with Kripke Specifica-
tion Monads (and No Meta-Programming)”. In: Proc. ACM Program. Lang.
6.ICFP (Aug. 2022). doi: 10.1145/3547628. url: https://doi.org/10.
1145/3547628.

[Keu+22b] Steven Keuchel et al. “Verified Symbolic Execution with Kripke Specifica-
tion Monads (and no Meta-Programming)”. In: Proc. ACM Program. Lang.
6.ICFP (2022), pp. 194–224. doi: 10.1145/3547628. url: https://doi.org/
10.1145/3547628.

[Kin76] James C. King. “Symbolic Execution and Program Testing”. In: Commun.
ACM 19.7 (1976). doi: 10.1145/360248.360252. url: https://doi.org/
10.1145/360248.360252.

[Kne91] Ralf Kneuper. “Symbolic Execution: A Semantic Approach”. In: Sci. Comput.
Program. 16.3 (1991), pp. 207–249. doi: 10.1016/0167-6423(91)90008-L.

[Ler09] Xavier Leroy. “A Formally Verified Compiler Back-end”. In: J. Autom. Rea-
son. 43.4 (2009). doi: 10.1007/s10817-009-9155-4. url: https://doi.
org/10.1007/s10817-009-9155-4.

[Ler11] Xavier Leroy. “Verified squared: does critical software deserve verified
tools?” In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January
26-28, 2011. Ed. by Thomas Ball and Mooly Sagiv. ACM, 2011, pp. 1–2. doi:
10.1145/1926385.1926387. url: https://doi.org/10.1145/1926385.
1926387.

[Let08] Pierre Letouzey. “Extraction in Coq: An Overview”. In: Logic and The-
ory of Algorithms. Ed. by Arnold Beckmann, Costas Dimitracopoulos,
and Benedikt Löwe. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 359–369. isbn: 978-3-540-69407-6.

[MFS90] Barton P. Miller, Lars Fredriksen, and Bryan So. “An Empirical Study of the
Reliability of UNIX Utilities”. In: Commun. ACM 33.12 (Dec. 1990), pp. 32–
44. issn: 0001-0782. doi: 10.1145/96267.96279. url: https://doi.org/
10.1145/96267.96279.

[OHe19] Peter W. O’Hearn. “Incorrectness Logic”. In: Proc. ACM Program. Lang.
4.POPL (Dec. 2019). doi: 10.1145/3371078. url: https://doi.org/10.
1145/3371078.

[Par+15] Zoe Paraskevopoulou et al. “Foundational Property-Based Testing”. In:
Interactive Theorem Proving. Ed. by Christian Urban and Xingyuan Zhang.

68

https://doi.org/10.1145/2676726.2676966
https://doi.org/10.1145/2676726.2676966
https://doi.org/10.1145/3547628
https://doi.org/10.1145/3547628
https://doi.org/10.1145/3547628
https://doi.org/10.1145/3547628
https://doi.org/10.1145/3547628
https://doi.org/10.1145/3547628
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1016/0167-6423(91)90008-L
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/1926385.1926387
https://doi.org/10.1145/1926385.1926387
https://doi.org/10.1145/1926385.1926387
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078

Bibliography

Cham: Springer International Publishing, 2015, pp. 325–343. isbn: 978-3-
319-22102-1.

[Por+22] Sorawee Porncharoenwase et al. “A Formal Foundation for Symbolic Eval-
uation with Merging”. In: Proc. ACM Program. Lang. 6.POPL (Jan. 2022).
doi: 10.1145/3498709. url: https://doi.org/10.1145/3498709.

[Soz] Matthieu Sozeau. The Coq documentation (version 8.18.0) - Language Exten-
sions - Program. url: https://coq.inria.fr/refman/addendum/program.
html.

[Soz10] Matthieu Sozeau. “Equations: A Dependent Pattern-Matching Compiler”.
In: Interactive Theorem Proving. Ed. by Matt Kaufmann and Lawrence C.
Paulson. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 419–434.

[Ste20] Dominic Steinhöfel. “Abstract Execution: Automatically Proving Infinitely
Many Programs”. PhD thesis. Darmstadt University of Technology, Ger-
many, 2020. url: http://tuprints.ulb.tu-darmstadt.de/8540/.

[WZS20] Dominik Winterer, Chengyu Zhang, and Zhendong Su. “On the Unusual
Effectiveness of Type-Aware Operator Mutations for Testing SMT Solvers”.
In: Proc. ACM Program. Lang. 4.OOPSLA (Nov. 2020). doi:10.1145/3428261.
url: https://doi.org/10.1145/3428261.

69

https://doi.org/10.1145/3498709
https://doi.org/10.1145/3498709
https://coq.inria.fr/refman/addendum/program.html
https://coq.inria.fr/refman/addendum/program.html
http://tuprints.ulb.tu-darmstadt.de/8540/
https://doi.org/10.1145/3428261
https://doi.org/10.1145/3428261

	Introduction
	Background and motivations
	Contributions
	Structure of the thesis

	Preliminaries
	Automated bug-finding by symbolic execution
	The Coq proof assistant

	Formal foundations of symbolic execution
	BUG: a target programming language
	Symbolic execution of BUG

	Verified Implementation of a Symbolic Interpreter
	Challenges
	A coinductive symbolic interpreter
	Faithfulness to the Reference Semantics

	Reducing The State Space
	Symbolic semantics with pruning
	Implementing the interpreter with pruning
	Correctness of the interpreter with pruning

	Deriving a Verified Bug Finder
	Turning the symbolic interpreter into a bug finder
	Bug finding under assumptions
	Extraction from Coq to OCaml
	Evaluation

	Related Work
	Verified program provers
	Formal foundations of bug-finding

	Conclusion

