Easy to Win, Hard to Master: Optimal Strategies in Parity Games with Costs

Joint work with Martin Zimmermann

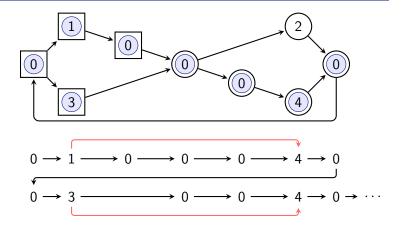
Alexander Weinert

Saarland University

September 9th, 2016

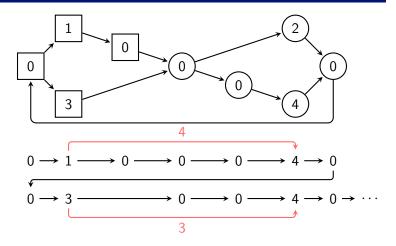
Highlights 2016 - Brussels

Parity Games



Deciding winner in $UP \cap CO-UP$ Positional Strategies Example due to (Fijalkow and Chatterjee, Infinite-state games, 2013)

Finitary Parity Games



Goal for Player 0: Bound response times Example due to (Fijalkow and Chatterjee, Infinite-state games, 2013)

Decision Problem

Theorem (Chatterjee et al., Finitary Winning, 2009) The following decision problem is in PTIME: Input: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$

Question: Does there exist a strategy σ with $Cst(\sigma) < \infty$?

Theorem

The following decision problem is PSPACE-*complete:*

Input: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega)),$ bound $b \in \mathbb{N}$

Question: Does there exist a strategy σ with $Cst(\sigma) \leq b$?

From Finitary Parity to Parity

Given: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$, bound $b \in \mathbb{N}$.

Lemma

Deciding if Player 0 has strategy σ with $Cst(\sigma) \leq b$ is in PSPACE. Idea: Simulate game, keeping track of open requests.

Lemma

Player 0 has such a strategy iff she "survives" p(|G|) steps in extended game G'.

Algorithm:

Simulate all plays in \mathcal{G}' on-the-fly for $p(|\mathcal{G}|)$ steps using an alternating Turing machine.

 $\begin{array}{l} \Rightarrow \mbox{Problem is in } APTIME \\ \mbox{(Chandra et al., Alternation, 1981)} \\ \Rightarrow \mbox{Problem is in } PSPACE \end{array}$

PSpace-completeness

Lemma

The given decision problem is in PSPACE.

Lemma

The given decision problem is PSPACE-hard.

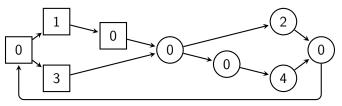
Proof: By reduction from quantified Boolean formulas

 \Rightarrow The given decision problem is $\operatorname{PSPACE}\text{-complete}$

Theorem

Optimal strategies for finitary parity games need exponential memory

Sufficiency: Corollary of proof of PSPACE-membership **Necessity:**



For given parameter d:

- Generalize to d colors
- Repeat d times

Player 1 has d choices of d actions \Rightarrow Player 0 needs $\approx 2^d$ memory states

Conclusion

	Parity	Finitary Parity	
		Winning	Optimal
Complexity Strategies	$\begin{array}{c} \mathrm{UP}\cap\mathrm{co}\text{-}\mathrm{UP}\\ 1\end{array}$	PTime 1	PSPACE-comp. Exp.

Take-away: Forcing Player 0 to answer quickly in (finitary) parity games makes it harder

- to decide whether she can satisfy the bound
- for her to play the game