Easy to Win, Hard to Master: Optimal Strategies in Parity Games with Costs

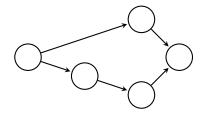
Joint work with Martin Zimmermann

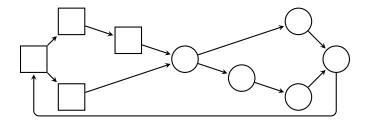
Alexander Weinert

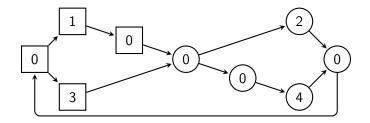
Saarland University

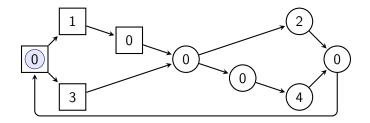
August 31st, 2016

CSL 2016 - Marseille, France

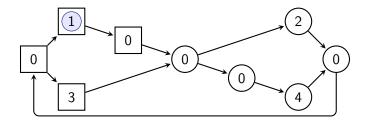




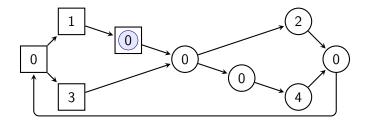




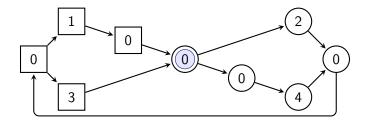
0



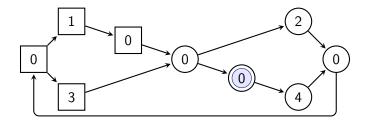
 $0 \rightarrow 1$



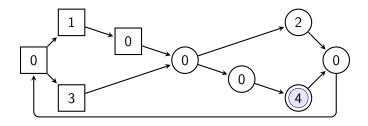
 $0 \rightarrow 1 \longrightarrow 0$



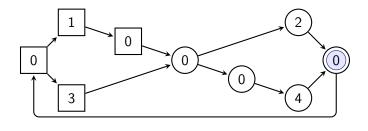
$0 \rightarrow 1 \longrightarrow 0 \longrightarrow 0$



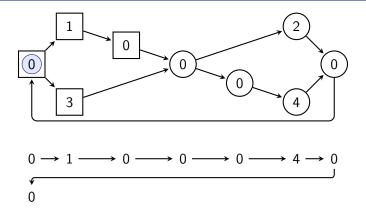
$0 \longrightarrow 1 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$

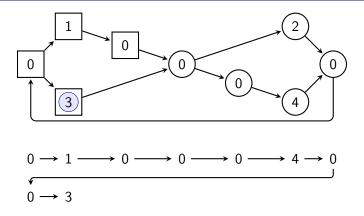


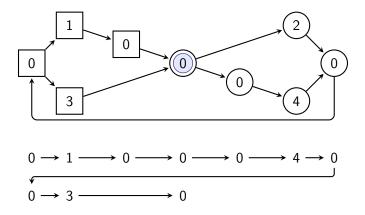
$0 \rightarrow 1 \longrightarrow 0 \longrightarrow 0 \longrightarrow 4$

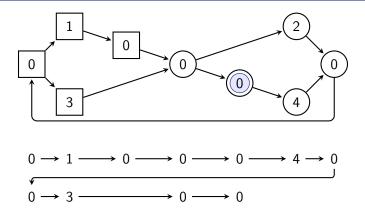


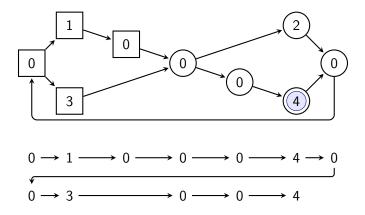
$0 \longrightarrow 1 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 4 \longrightarrow 0$

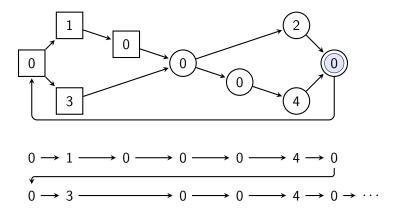


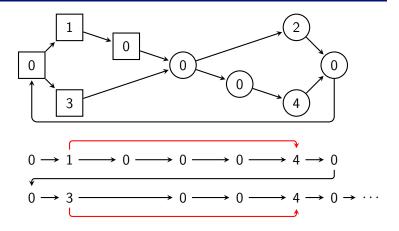


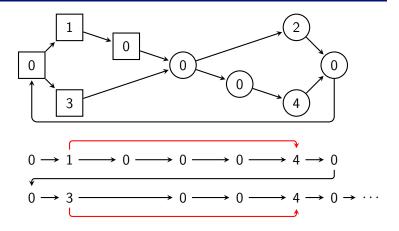




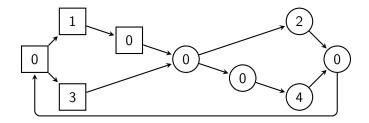


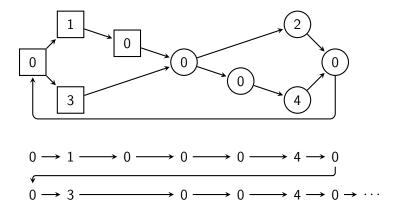


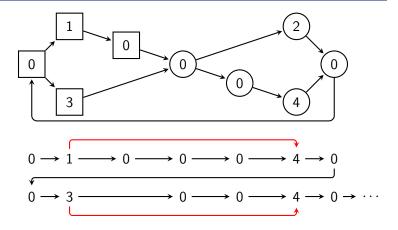


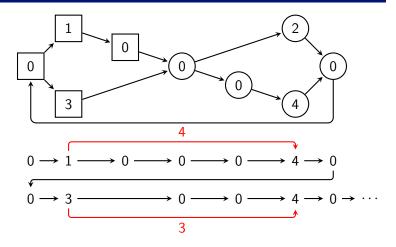


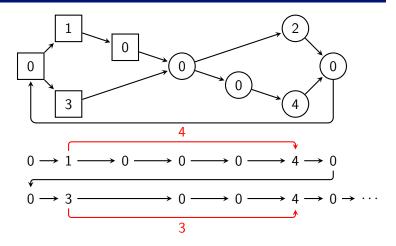
Deciding winner in $UP \cap CO-UP$ Positional Strategies Example due to (Fijalkow and Chatterjee, Infinite-state games, 2013)











Goal for Player 0: Bound response times Example due to (Fijalkow and Chatterjee, Infinite-state games, 2013)

Decision Problem

Theorem (Chatterjee et al., Finitary Winning, 2009) The following decision problem is in PTIME: Input: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$

Question: Does there exist a strategy σ with $Cst(\sigma) < \infty$?

Decision Problem

Theorem (Chatterjee et al., Finitary Winning, 2009) The following decision problem is in PTIME: Input: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$

Question: Does there exist a strategy σ with $Cst(\sigma) < \infty$?

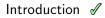
Theorem

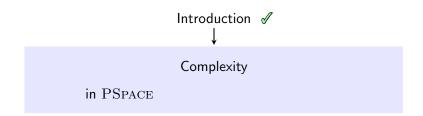
The following decision problem is PSPACE-*complete:*

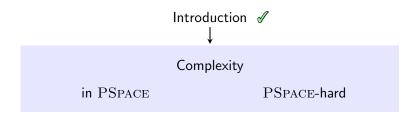
Input: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega)),$ bound $b \in \mathbb{N}$

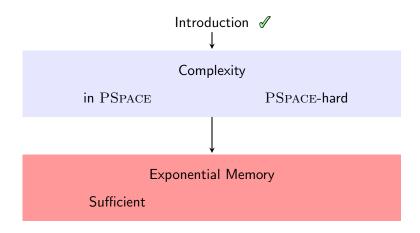
Question: Does there exist a strategy σ with $Cst(\sigma) \leq b$?

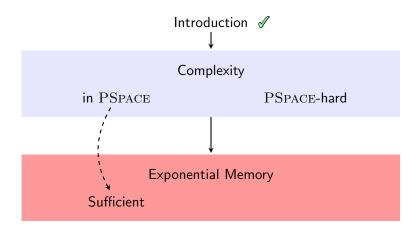
Introduction

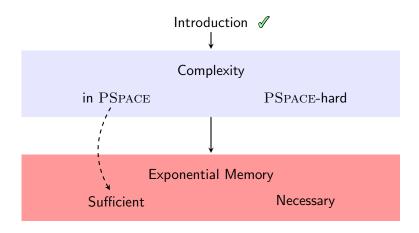












From Finitary Parity to Parity

Given: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$, bound $b \in \mathbb{N}$.

Lemma

Deciding if Player 0 has strategy σ with $Cst(\sigma) \leq b$ is in PSPACE.

From Finitary Parity to Parity

Given: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$, bound $b \in \mathbb{N}$.

Lemma

Deciding if Player 0 has strategy σ with $Cst(\sigma) \leq b$ is in PSPACE.

Idea: Simulate game, keeping track of open requests.

From Finitary Parity to Parity

Given: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$, bound $b \in \mathbb{N}$.

Lemma

Deciding if Player 0 has strategy σ with $Cst(\sigma) \leq b$ is in PSPACE. Idea: Simulate game, keeping track of open requests.

Lemma

Player 0 has such a strategy iff she "survives" p(|G|) steps in extended game G'.

Given: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$, bound $b \in \mathbb{N}$.

Lemma

Deciding if Player 0 has strategy σ with $Cst(\sigma) \leq b$ is in PSPACE. Idea: Simulate game, keeping track of open requests.

Lemma

Player 0 has such a strategy iff she "survives" p(|G|) steps in extended game G'.

Algorithm:

Simulate all plays in \mathcal{G}' on-the-fly for $p(|\mathcal{G}|)$ steps

Given: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$, bound $b \in \mathbb{N}$.

Lemma

Deciding if Player 0 has strategy σ with $Cst(\sigma) \leq b$ is in PSPACE. Idea: Simulate game, keeping track of open requests.

Lemma

Player 0 has such a strategy iff she "survives" p(|G|) steps in extended game G'.

Algorithm:

Simulate all plays in \mathcal{G}' on-the-fly for $p(|\mathcal{G}|)$ steps using an alternating Turing machine.

Given: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$, bound $b \in \mathbb{N}$.

Lemma

Deciding if Player 0 has strategy σ with $Cst(\sigma) \leq b$ is in PSPACE. Idea: Simulate game, keeping track of open requests.

Lemma

Player 0 has such a strategy iff she "survives" p(|G|) steps in extended game G'.

Algorithm:

Simulate all plays in \mathcal{G}' on-the-fly for $p(|\mathcal{G}|)$ steps using an alternating Turing machine.

\Rightarrow Problem is in APTIME

Given: Finitary parity game $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$, bound $b \in \mathbb{N}$.

Lemma

Deciding if Player 0 has strategy σ with $Cst(\sigma) \leq b$ is in PSPACE. Idea: Simulate game, keeping track of open requests.

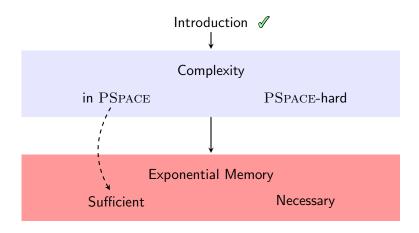
Lemma

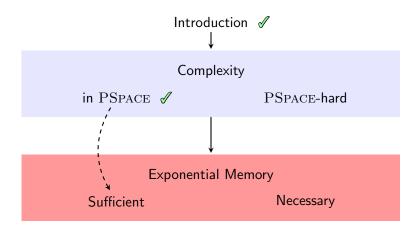
Player 0 has such a strategy iff she "survives" p(|G|) steps in extended game G'.

Algorithm:

Simulate all plays in \mathcal{G}' on-the-fly for $p(|\mathcal{G}|)$ steps using an alternating Turing machine.

 $\begin{array}{l} \Rightarrow \mbox{Problem is in } APTIME \\ \mbox{(Chandra et al., Alternation, 1981)} \\ \Rightarrow \mbox{Problem is in } PSPACE \end{array}$





Lemma

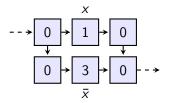
The given decision problem is PSPACE-hard.

The given decision problem is PSPACE-hard.

$$\forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$

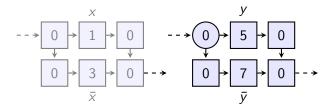
The given decision problem is PSPACE-*hard.*

$$\forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$



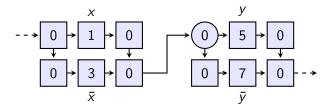
The given decision problem is PSPACE-hard.

$$\forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$



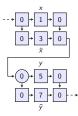
The given decision problem is PSPACE-hard.

$$\forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$



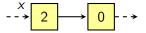
The given decision problem is PSPACE-hard.

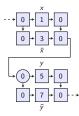
$$\forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$



The given decision problem is PSPACE-hard.

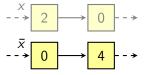
$$\forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$

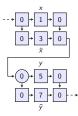




The given decision problem is PSPACE-hard.

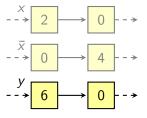
$$\forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$

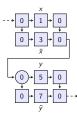




The given decision problem is PSPACE-hard.

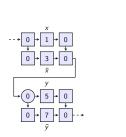
$$\forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$





The given decision problem is PSPACE-hard.

$$\forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$

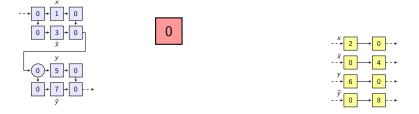




Lemma

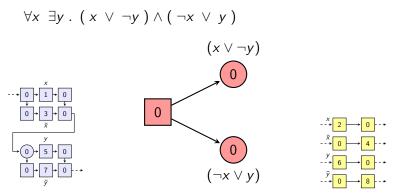
The given decision problem is PSPACE-hard.

$$\forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$



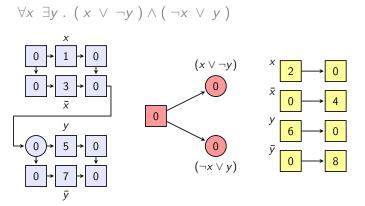
Lemma

The given decision problem is PSPACE-hard.



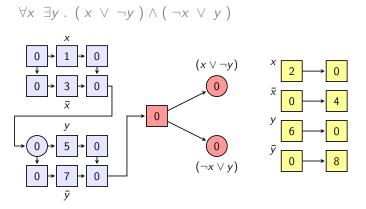
Lemma

The given decision problem is PSPACE-hard.



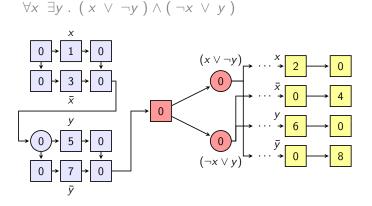
Lemma

The given decision problem is PSPACE-hard.



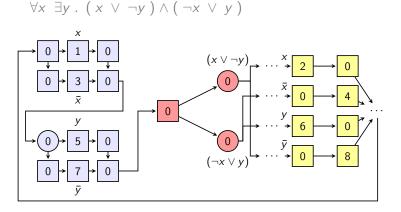
Lemma

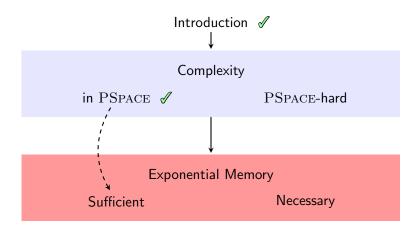
The given decision problem is PSPACE-hard.

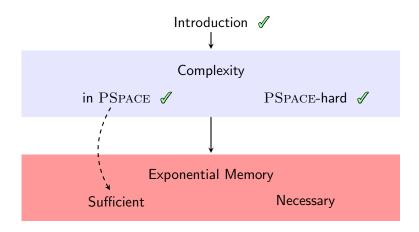


Lemma

The given decision problem is PSPACE-hard.







Theorem

Optimal strategies for parity games require exponential memory.

Theorem

Optimal strategies for parity games require exponential memory.

Sufficiency: Corollary of proof of PSpace -membership

Theorem

Optimal strategies for parity games require exponential memory.

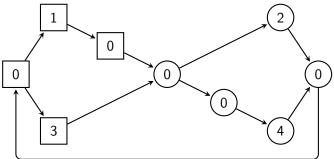
Sufficiency: Corollary of proof of PSPACE -membership

Theorem

Optimal strategies for parity games require exponential memory.

Sufficiency: Corollary of proof of PSPACE -membership

Necessity: Construct family \mathcal{G}_d :



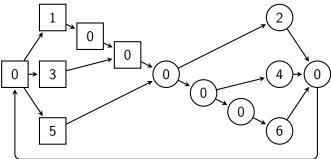
(Fijalkow and Chatterjee, Infinite-state games, 2013)

Theorem

Optimal strategies for parity games require exponential memory.

Sufficiency: Corollary of proof of PSPACE -membership

Necessity: Construct family \mathcal{G}_d :



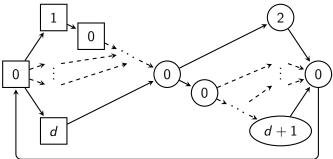
(Fijalkow and Chatterjee, Infinite-state games, 2013)

Theorem

Optimal strategies for parity games require exponential memory.

Sufficiency: Corollary of proof of PSPACE -membership

Necessity: Construct family \mathcal{G}_d :

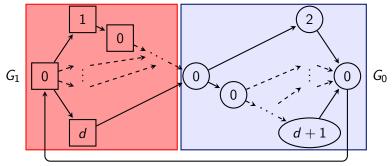


(Fijalkow and Chatterjee, Infinite-state games, 2013)

Theorem

Optimal strategies for parity games require exponential memory.

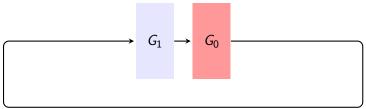
Sufficiency: Corollary of proof of PSPACE -membership



Theorem

Optimal strategies for parity games require exponential memory.

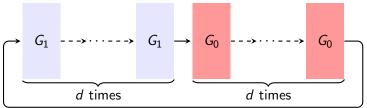
Sufficiency: Corollary of proof of PSPACE -membership



Theorem

Optimal strategies for parity games require exponential memory.

Sufficiency: Corollary of proof of PSPACE -membership

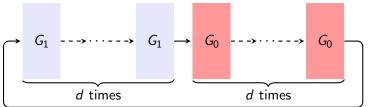


Theorem

Optimal strategies for parity games require exponential memory.

Sufficiency: Corollary of proof of PSPACE -membership

Necessity: Construct family \mathcal{G}_d :



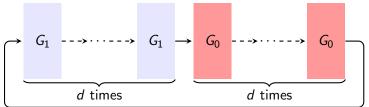
Player 0 needs to store d choices of d possible values each

Theorem

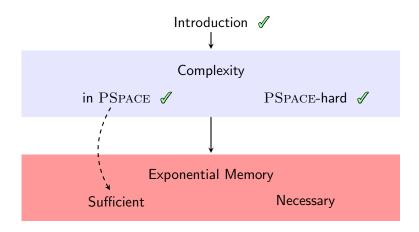
Optimal strategies for parity games require exponential memory.

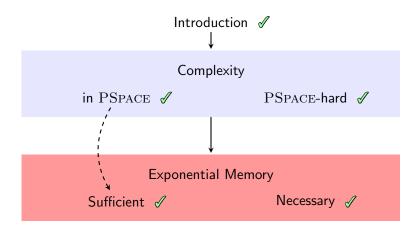
Sufficiency: Corollary of proof of PSPACE -membership

Necessity: Construct family \mathcal{G}_d :



Player 0 needs to store *d* choices of *d* possible values each \Rightarrow Player 0 requires $\approx 2^d$ many memory states





	Parity
Complexity	
Strategies	$UP \cap CO-UP$ 1

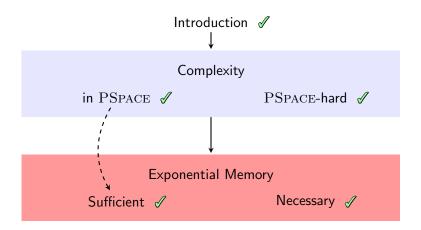
	Parity	Finitary Parity	
		Winning	
Complexity Strategies	$\begin{array}{c} \mathrm{UP}\cap\mathrm{co}\text{-}\mathrm{UP}\\ 1 \end{array}$	PTIME 1	

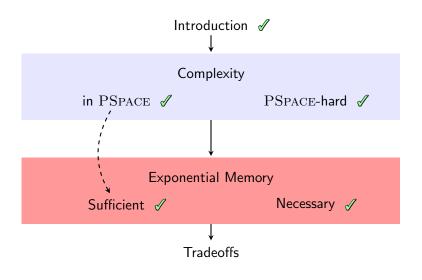
	Parity	Finitary Parity		
		Winning	Optimal	
Complexity Strategies	$\begin{array}{c} \mathrm{UP}\cap\mathrm{co}\text{-}\mathrm{UP}\\ 1\end{array}$	PTime 1	PSPACE-comp. Exp.	

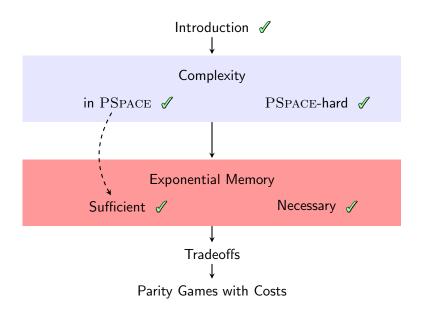
	Parity	Finitary Parity		
		Winning	Optimal	
Complexity Strategies	$\begin{array}{c} \mathrm{UP}\cap\mathrm{co}\mathrm{-UP}\\ 1\end{array}$	PTime 1	PSpace-comp. Exp.	

Take-away: Forcing Player 0 to answer quickly in parity games makes it harder

- to decide whether she can satisfy the bound
- for her to play the game









	Winning	Optimal
Size	1	2 ^d
Cost	3 <i>d</i>	2 <i>d</i>

	Winning		Optimal
Size	1	d	2 ^d
Cost	3 <i>d</i>		2 <i>d</i>

$$\xrightarrow{G_1} \xrightarrow{G_1} \xrightarrow{G_1} \xrightarrow{G_0} \xrightarrow{G_0}$$

	Winning		Optimal
Size	1	d	2 ^d
Cost	3 <i>d</i>	3d-1	2 <i>d</i>

$$\xrightarrow{G_1} \xrightarrow{G_1} \xrightarrow{G_1} \xrightarrow{G_0} \xrightarrow{G_0}$$

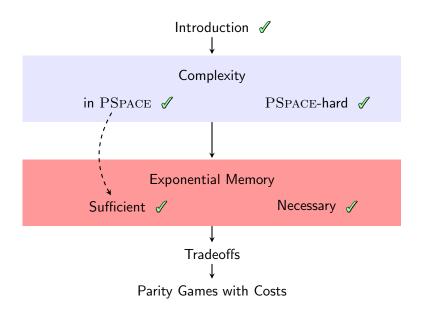
	Winning			Optimal
Size	1	d	2^{d-1}	2 ^d
Cost	3 <i>d</i>	3d - 1		2 <i>d</i>

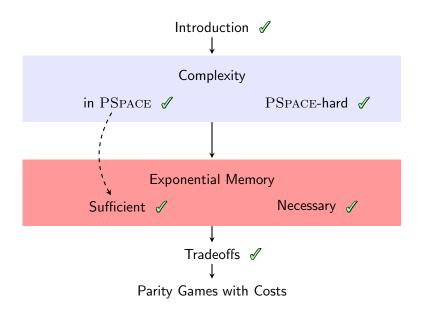
$$\xrightarrow{G_1} \xrightarrow{G_1} \xrightarrow{G_1} \xrightarrow{G_0} \xrightarrow{G_0}$$

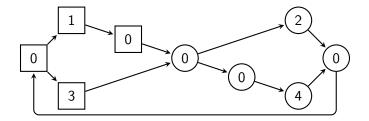
	Winning			Optimal
Size	1	d	2^{d-1}	2 ^{<i>d</i>}
Cost	3 <i>d</i>	3d - 1	2d+1	2 <i>d</i>

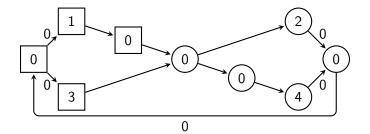
$$\xrightarrow{G_1} \xrightarrow{G_1} \xrightarrow{G_1} \xrightarrow{G_0} \xrightarrow{G_0}$$

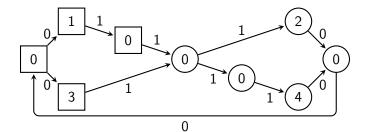
	Winning			Optimal
Size	1	d	 2^{d-1}	2 ^{<i>d</i>}
Cost	3 <i>d</i>	3d - 1	 2d + 1	2 <i>d</i>

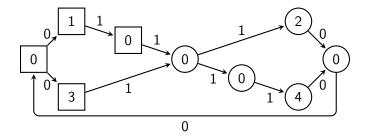




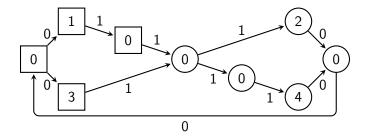




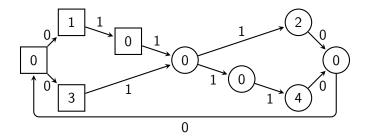




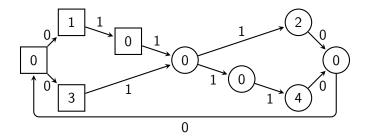
Finitary parity games are special case



Finitary parity games are special case \Rightarrow PSPACE-hard \Rightarrow Exp. memory necessary



Finitary parity games are special case $\Rightarrow PSPACE-hard \Rightarrow Exp.$ memory necessary Algorithm for solving finitary games works as well



	Parity	
Complexity	$\mathrm{UP}\cap\mathrm{co}\text{-}\mathrm{UP}$	
Strategies	1	

	Parity	Cost-Parity	
		Winning	
Complexity Strategies	$\begin{array}{c} \mathrm{UP}\cap\mathrm{co}\mathrm{-UP}\\ 1\end{array}$	$\begin{array}{c} \mathrm{UP} \cap \mathrm{co-UP} \\ 1 \end{array}$	

	Parity	Cost-Parity	
_		Winning	Optimal
Complexity Strategies	$\begin{array}{c} \mathrm{UP} \cap \mathrm{co-UP} \\ 1 \end{array}$	$\begin{array}{c} \mathrm{UP}\cap\mathrm{co}\mathrm{-UP}\\ 1\end{array}$	PSpace-comp. Exp.

	Parity	Cost-Parity	
		Winning	Optimal
Complexity Strategies	$\begin{array}{c} \mathrm{UP} \cap \mathrm{co-UP} \\ 1 \end{array}$	$UP \cap CO-UP$ 1	PSpace-comp. Exp.

Take-away: Forcing Player 0 to answer quickly in parity games makes it harder

- to decide whether she can satisfy the bound
- for her to play the game