# Easy to Win, Hard to Master: Optimal Strategies in Parity Games with Costs

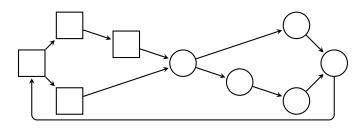
Joint work with Martin Zimmermann

Alexander Weinert

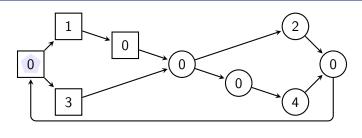
Saarland University

December 13th, 2016

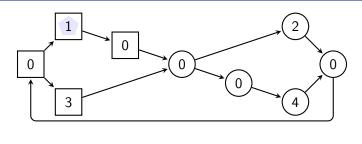
MFV Seminar, ULB, Brussels, Belgium



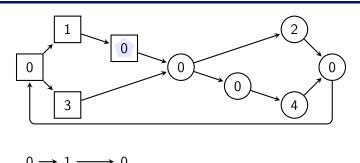


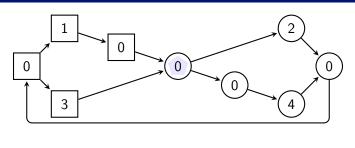


0

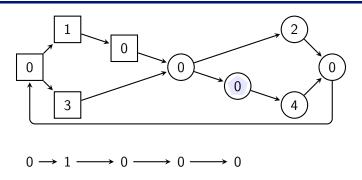


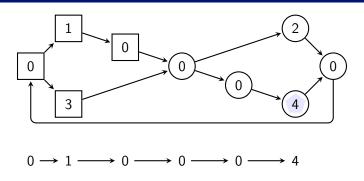
 $0 \rightarrow 1$ 

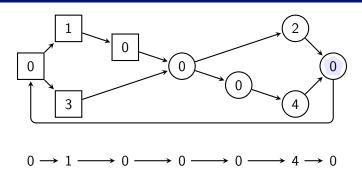


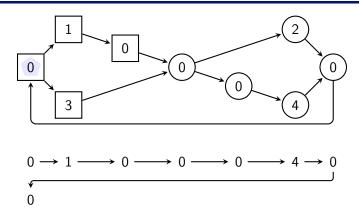


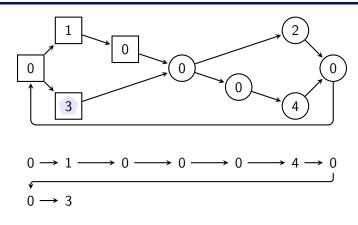
$$0 \rightarrow 1 \longrightarrow 0 \longrightarrow 0$$

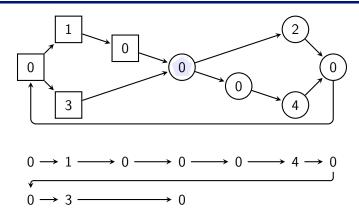


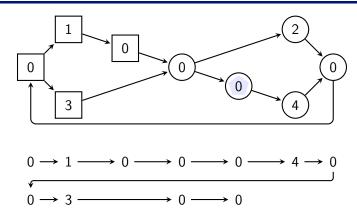


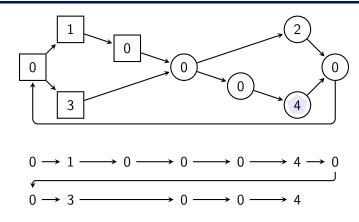


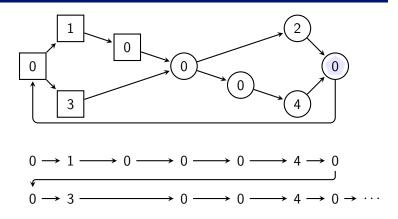


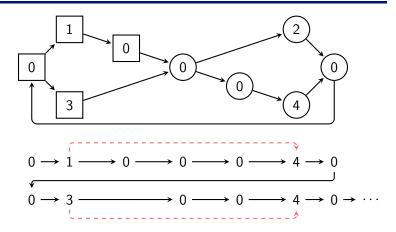


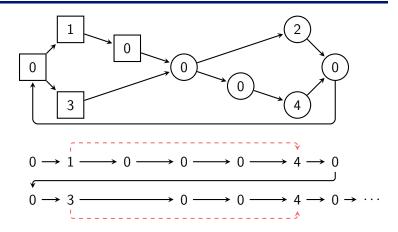






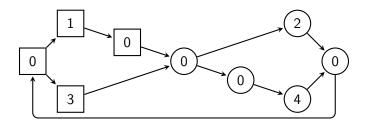


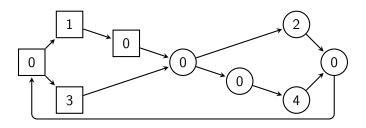


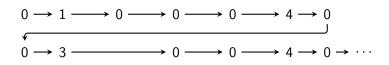


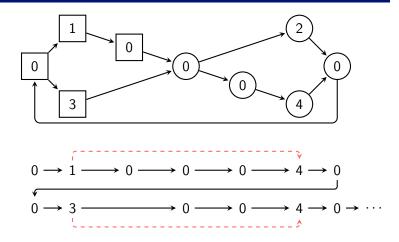
Deciding winner in  $UP \cap CO$ -UP

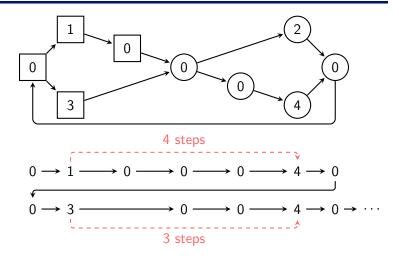
Positional Strategies

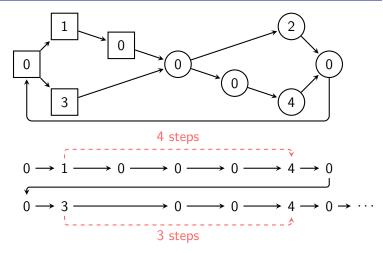




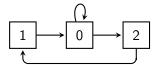


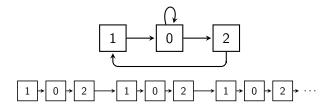


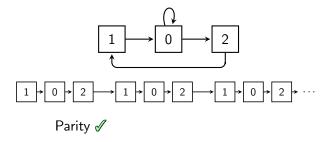


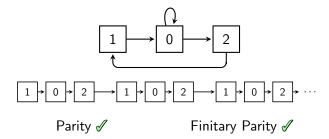


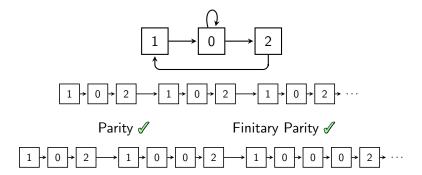
Goal for Player 0: Bound response times

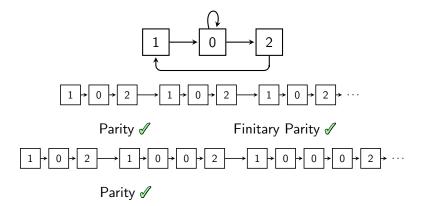


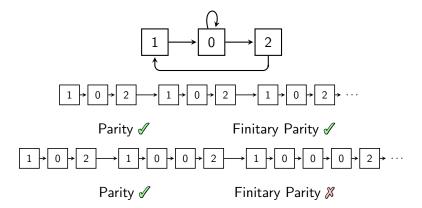


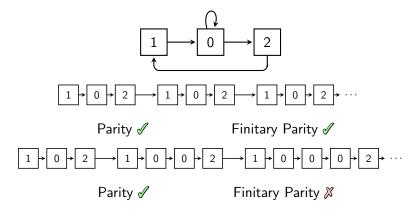












- Player 1 wins from every vertex,
- but needs to stay longer and longer in vertex of color 0 ⇒ requires infinite memory

#### **Decision Problem**

#### Theorem (Chatterjee et al., Finitary Winning, 2009)

The following decision problem is in PTIME:

**Input:** Finitary parity game  $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$ 

**Question:** Does there exist a strategy  $\sigma$  with  $Cst(\sigma) < \infty$ ?

#### **Decision Problem**

#### Theorem (Chatterjee et al., Finitary Winning, 2009)

The following decision problem is in PTIME:

**Input:** Finitary parity game  $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$ 

**Question:** Does there exist a strategy  $\sigma$  with  $Cst(\sigma) < \infty$ ?

#### **Theorem**

The following decision problem is PSPACE-complete:

**Input:** Finitary parity game  $G = (A, FinParity(\Omega))$ ,

bound  $b \in \mathbb{N}$ 

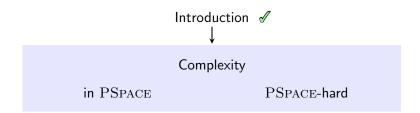
**Question:** Does there exist a strategy  $\sigma$  with  $Cst(\sigma) \leq b$ ?

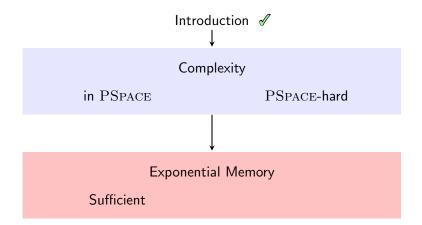
#### Introduction

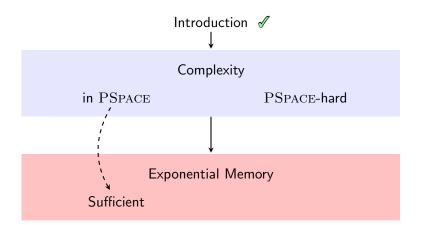
#### Introduction &

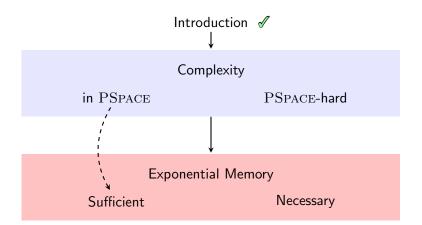


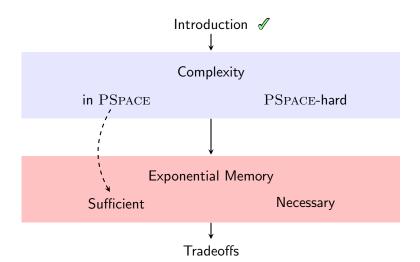


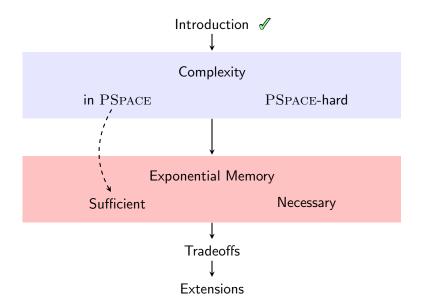












**Given:** Finitary parity game  $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$ , bound  $b \in \mathbb{N}$ .

#### Lemma

Deciding if Player 0 has strategy  $\sigma$  with  $Cst(\sigma) \leq b$  is in PSPACE.

**Given:** Finitary parity game  $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$ , bound  $b \in \mathbb{N}$ .

#### Lemma

Deciding if Player 0 has strategy  $\sigma$  with  $Cst(\sigma) \leq b$  is in PSPACE.

**Idea:** Simulate  $\mathcal{G}$ , keeping track of open requests explicitly.

**Result:** Parity game G' of exponential size.

**Given:** Finitary parity game  $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$ , bound  $b \in \mathbb{N}$ .

### Lemma

Deciding if Player 0 has strategy  $\sigma$  with  $Cst(\sigma) \leq b$  is in PSPACE.

**Idea:** Simulate  $\mathcal{G}$ , keeping track of open requests explicitly.

**Result:** Parity game G' of exponential size.

### Lemma

The winner of a play in  $\mathcal{G}'$  can be decided after  $p(|\mathcal{G}|)$  steps.

**Given:** Finitary parity game  $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$ , bound  $b \in \mathbb{N}$ .

### Lemma

Deciding if Player 0 has strategy  $\sigma$  with  $Cst(\sigma) \leq b$  is in PSPACE.

**Idea:** Simulate  $\mathcal{G}$ , keeping track of open requests explicitly.

**Result:** Parity game G' of exponential size.

### Lemma

The winner of a play in  $\mathcal{G}'$  can be decided after  $p(|\mathcal{G}|)$  steps.

### Algorithm:

Simulate all plays in  $\mathcal{G}'$  on-the-fly for  $p(|\mathcal{G}|)$  steps

**Given:** Finitary parity game  $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$ , bound  $b \in \mathbb{N}$ .

### Lemma

Deciding if Player 0 has strategy  $\sigma$  with  $Cst(\sigma) \leq b$  is in PSPACE.

**Idea:** Simulate  $\mathcal{G}$ , keeping track of open requests explicitly.

**Result:** Parity game G' of exponential size.

### Lemma

The winner of a play in  $\mathcal{G}'$  can be decided after  $p(|\mathcal{G}|)$  steps.

### Algorithm:

Simulate all plays in  $\mathcal{G}'$  on-the-fly for  $p(|\mathcal{G}|)$  steps using an alternating Turing machine.

**Given:** Finitary parity game  $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$ , bound  $b \in \mathbb{N}$ .

### Lemma

Deciding if Player 0 has strategy  $\sigma$  with  $Cst(\sigma) \leq b$  is in PSPACE.

**Idea:** Simulate  $\mathcal{G}$ , keeping track of open requests explicitly.

**Result:** Parity game G' of exponential size.

### Lemma

The winner of a play in  $\mathcal{G}'$  can be decided after  $p(|\mathcal{G}|)$  steps.

### Algorithm:

Simulate all plays in  $\mathcal{G}'$  on-the-fly for  $p(|\mathcal{G}|)$  steps using an alternating Turing machine.

 $\Rightarrow$  Problem is in APTIME

**Given:** Finitary parity game  $\mathcal{G} = (\mathcal{A}, \operatorname{FinParity}(\Omega))$ , bound  $b \in \mathbb{N}$ .

### Lemma

Deciding if Player 0 has strategy  $\sigma$  with  $Cst(\sigma) \leq b$  is in PSPACE.

**Idea:** Simulate  $\mathcal{G}$ , keeping track of open requests explicitly.

**Result:** Parity game G' of exponential size.

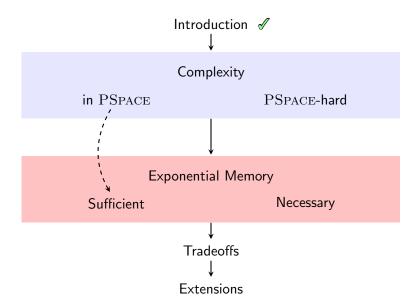
### Lemma

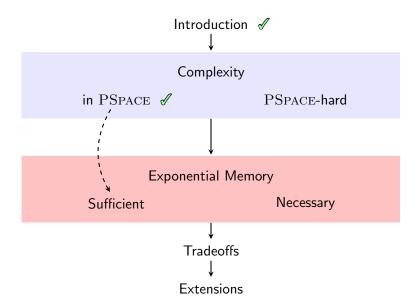
The winner of a play in  $\mathcal{G}'$  can be decided after  $p(|\mathcal{G}|)$  steps.

### Algorithm:

Simulate all plays in  $\mathcal{G}'$  on-the-fly for  $p(|\mathcal{G}|)$  steps using an alternating Turing machine.

⇒ Problem is in APTIME
(Chandra et al., Alternation, 1981)
⇒ Problem is in PSPACE





### **PSPACE-Hardness**

### Lemma

The following problem is PSPACE-hard: "Given a finitary parity game  $\mathcal{G}$  and a bound  $b \in \mathbb{N}$ , does Player 0 have a strategy  $\sigma$  for  $\mathcal{G}$  with  $\mathrm{Cst}(\sigma) \leq b$ ?"

## **PSPACE-Hardness**

### Lemma

The following problem is PSPACE-hard: "Given a finitary parity game  $\mathcal{G}$  and a bound  $b \in \mathbb{N}$ , does Player 0 have a strategy  $\sigma$  for  $\mathcal{G}$  with  $\mathrm{Cst}(\sigma) \leq b$ ?"

### **Proof**

- By reduction from QBF
- Checking the truth of  $\varphi = \forall x \exists y. \ (x \lor \neg y) \land (\neg x \lor y)$  as a two-player game (Player 0 wants to prove truth of  $\varphi$ ):

# **PSPACE-Hardness**

### Lemma

The following problem is PSPACE-hard: "Given a finitary parity game  $\mathcal G$  and a bound  $b \in \mathbb N$ , does Player 0 have a strategy  $\sigma$  for  $\mathcal G$  with  $\mathrm{Cst}(\sigma) \leq b$ ?"

### **Proof**

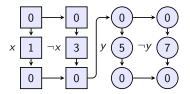
- By reduction from QBF
- Checking the truth of  $\varphi = \forall x \exists y. \ (x \lor \neg y) \land (\neg x \lor y)$  as a two-player game (Player 0 wants to prove truth of  $\varphi$ ):
  - **1.** Player 1 picks truth value for *x*
  - **2.** Player 0 picks truth value for *y*
  - **3.** Player 1 picks clause *C*
  - **4.** Player 0 picks literal  $\ell$  from C
  - **5.** Player 0 wins  $\Leftrightarrow \ell$  is picked to be satisfied in step 1 or 2

$$\varphi = \forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$

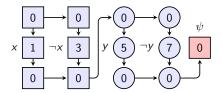
$$\varphi = \forall x \exists y . \ (x \lor \neg y) \land (\neg x \lor y)$$

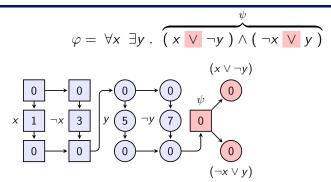


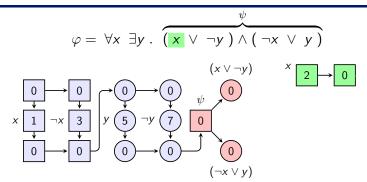
$$\varphi = \forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$

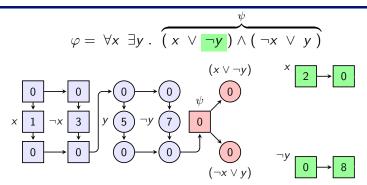


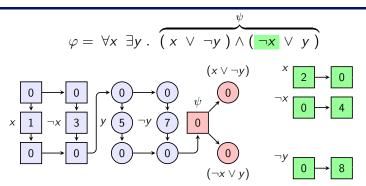
$$\varphi = \forall x \exists y . \ (x \lor \neg y) \land (\neg x \lor y)$$

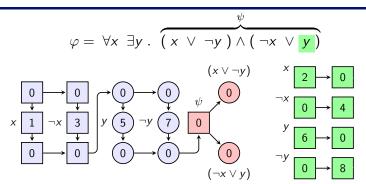


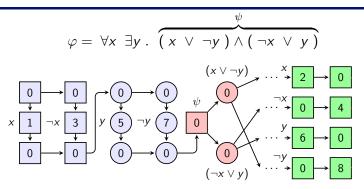


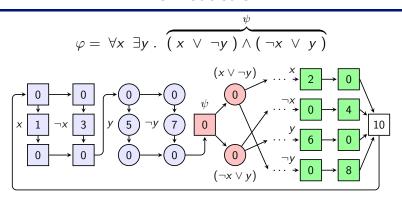


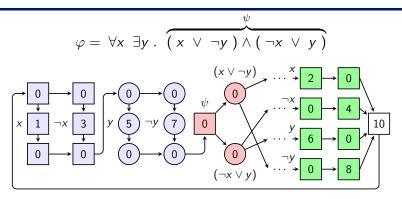


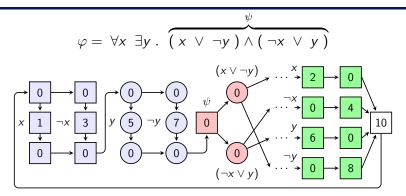


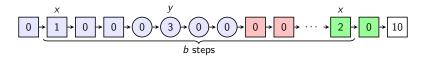




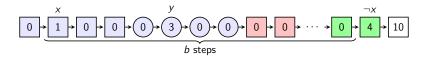




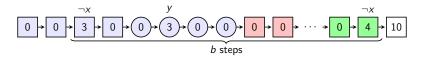




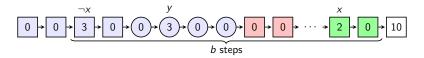


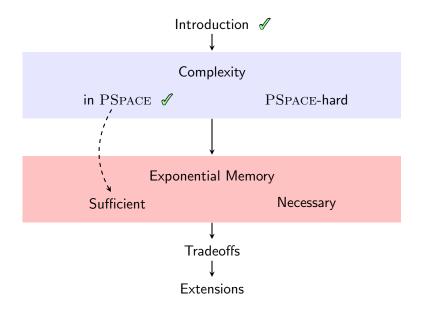


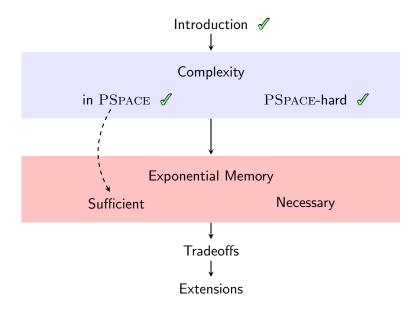












## Sufficient Memory (for Player 0)

### Corollary

Let  $\mathcal G$  be a parity game with costs with d odd colors. If Player 0 has a strategy  $\sigma$  for  $\mathcal G$  with  $\mathrm{Cst}(\sigma)=b$ , then she also has a strategy  $\sigma'$  with  $\mathrm{Cst}(\sigma')=b$  and size  $(b+2)^d=2^{d\log(b+2)}$ .

## Sufficient Memory (for Player 0)

## Corollary

Let  $\mathcal G$  be a parity game with costs with d odd colors. If Player 0 has a strategy  $\sigma$  for  $\mathcal G$  with  $\mathrm{Cst}(\sigma)=b$ , then she also has a strategy  $\sigma'$  with  $\mathrm{Cst}(\sigma')=b$  and size  $(b+2)^d=2^{d\log(b+2)}$ .

#### Follows from

- proof of PSPACE-membership and
- positional strategies for parity games.

#### Theorem

Optimal strategies for parity games require exponential memory.

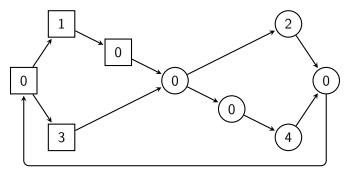
### Theorem

Optimal strategies for parity games require exponential memory.

#### Theorem

Optimal strategies for parity games require exponential memory.

**Necessity:** Construct family  $\mathcal{G}_d$ :

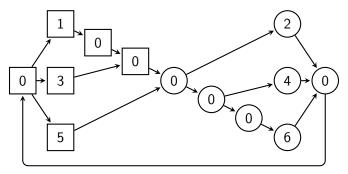


(Fijalkow and Chatterjee, Infinite-state games, 2013)

### Theorem

Optimal strategies for parity games require exponential memory.

**Necessity:** Construct family  $\mathcal{G}_d$ :

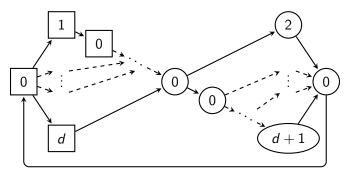


(Fijalkow and Chatterjee, Infinite-state games, 2013)

#### Theorem

Optimal strategies for parity games require exponential memory.

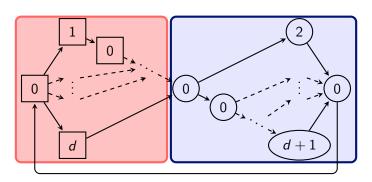
**Necessity:** Construct family  $\mathcal{G}_d$ :



(Fijalkow and Chatterjee, Infinite-state games, 2013)

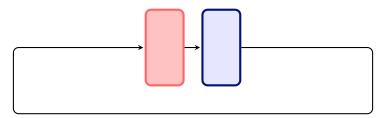
#### Theorem

Optimal strategies for parity games require exponential memory.



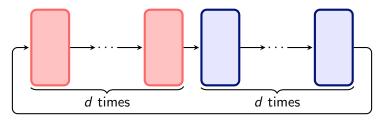
#### Theorem

Optimal strategies for parity games require exponential memory.



#### Theorem

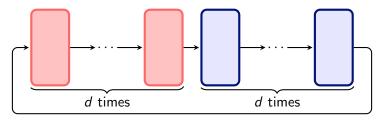
Optimal strategies for parity games require exponential memory.



### Theorem

Optimal strategies for parity games require exponential memory.

**Necessity:** Construct family  $\mathcal{G}_d$ :



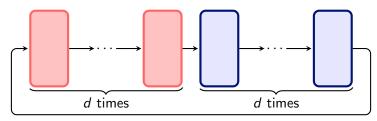
### For optimal play:

Player 0 needs to store d choices of d possible values each

#### Theorem

Optimal strategies for parity games require exponential memory.

**Necessity:** Construct family  $\mathcal{G}_d$ :



### For optimal play:

Player 0 needs to store d choices of d possible values each

 $\Rightarrow$  Player 0 requires  $\approx 2^d$  many memory states

## Memory Requirements (cont.)

#### Theorem

For every d > 1, there exists a finitary parity game  $\mathcal{G}_d$  such that

- ullet  $|\mathcal{G}_d| \in \mathcal{O}(d^2)$  and  $\mathcal{G}_d$  has d odd colors, and
- every optimal strategy for Player 0 has at least size  $2^d 2$ .

## Memory Requirements (cont.)

#### Theorem

For every d > 1, there exists a finitary parity game  $\mathcal{G}_d$  such that

- ullet  $|\mathcal{G}_d| \in \mathcal{O}(d^2)$  and  $\mathcal{G}_d$  has d odd colors, and
- every optimal strategy for Player 0 has at least size  $2^d 2$ .

Similar bounds (upper and lower) hold true for Player 1.

## **Corollary**

Let  $\mathcal G$  be a parity game with costs with d odd colors. If Player 0 has a strategy  $\sigma$  for  $\mathcal G$  with  $\mathrm{Cst}(\sigma)=b$ , then she also has a strategy  $\sigma'$  with  $\mathrm{Cst}(\sigma')=b$  and size  $(b+2)^d=2^{d\log(b+2)}$ .

## Memory Requirements (cont.)

#### Theorem

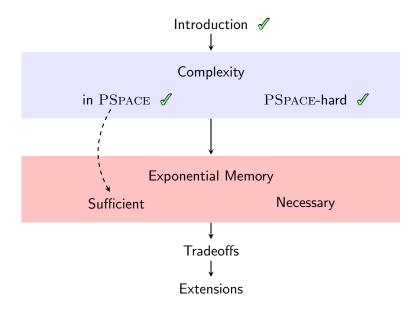
For every d > 1, there exists a finitary parity game  $\mathcal{G}_d$  such that

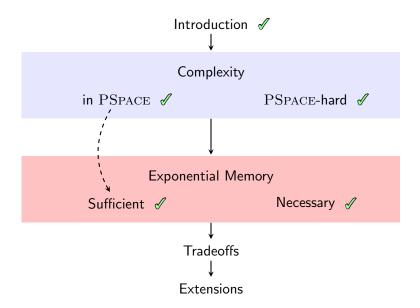
- ullet  $|\mathcal{G}_d| \in \mathcal{O}(d^2)$  and  $\mathcal{G}_d$  has d odd colors, and
- every optimal strategy for Player 0 has at least size  $2^d 2$ .

Similar bounds (upper and lower) hold true for Player 1.

## **Corollary**

Let  $\mathcal G$  be a parity game with costs with d odd colors. If Player 0 has a strategy  $\sigma$  for  $\mathcal G$  with  $\mathrm{Cst}(\sigma)=b$ , then she also has a strategy  $\sigma'$  with  $\mathrm{Cst}(\sigma')=b$  and size  $(b+2)^d=2^{d\log(b+2)}$ .





|                          | Parity                   |  |
|--------------------------|--------------------------|--|
|                          |                          |  |
| Complexity<br>Strategies | $UP \cap CO$ - $UP$ Pos. |  |

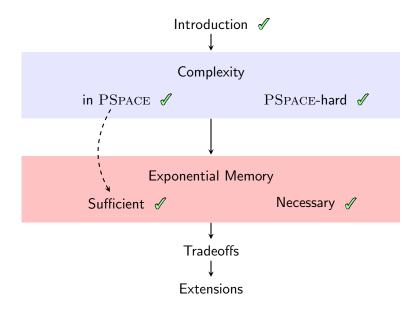
|                          | Parity           | Finitary Parity |  |
|--------------------------|------------------|-----------------|--|
|                          |                  | Winning         |  |
| Complexity<br>Strategies | UP∩co-UP<br>Pos. | PTIME<br>Pos.   |  |

|                          | Parity           | Finitary Parity |                                                                              |
|--------------------------|------------------|-----------------|------------------------------------------------------------------------------|
|                          |                  | Winning         | Optimal                                                                      |
| Complexity<br>Strategies | UP∩co-UP<br>Pos. | PTIME<br>Pos.   | $\begin{array}{c} \mathrm{PSPACE\text{-}comp.} \\ \mathrm{Exp.} \end{array}$ |

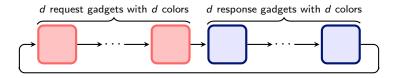
|                          | Parity           | Finitary Parity |                      |
|--------------------------|------------------|-----------------|----------------------|
|                          |                  | Winning         | Optimal              |
| Complexity<br>Strategies | UP∩co-UP<br>Pos. | PTIME<br>Pos.   | PSPACE-comp.<br>Exp. |

**Take-away:** Forcing Player 0 to answer quickly in (finitary) parity games makes it harder

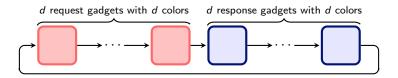
- to decide whether she can satisfy the bound
- for her to play the game



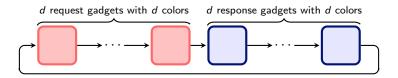




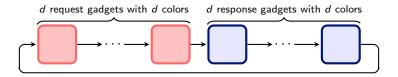
■ **Recall:** Player 0 has winning strategy with cost  $d^2 + 2d$  and size  $2^d - 2$ : store all d requests made by Player 1.



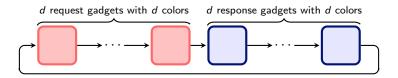
- **Recall:** Player 0 has winning strategy with cost  $d^2 + 2d$  and size  $2^d 2$ : store all d requests made by Player 1.
- **Smaller strategy:** Only store first *i* unique requests, then default to largest answer.



- **Recall:** Player 0 has winning strategy with cost  $d^2 + 2d$  and size  $2^d 2$ : store all d requests made by Player 1.
- **Smaller strategy:** Only store first *i* unique requests, then default to largest answer.
  - $\Rightarrow$  achieves cost  $d^2 + 3d i$



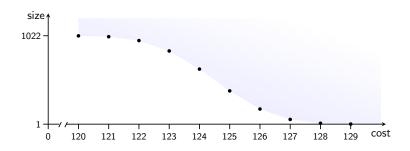
- **Recall:** Player 0 has winning strategy with cost  $d^2 + 2d$  and size  $2^d 2$ : store all d requests made by Player 1.
- **Smaller strategy:** Only store first *i* unique requests, then default to largest answer.
  - $\Rightarrow$  achieves cost  $d^2 + 3d i$  and size  $\sum_{j=1}^{i-1} {n \choose j}$

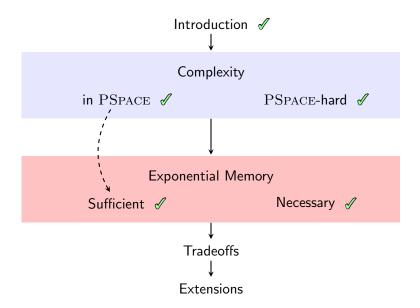


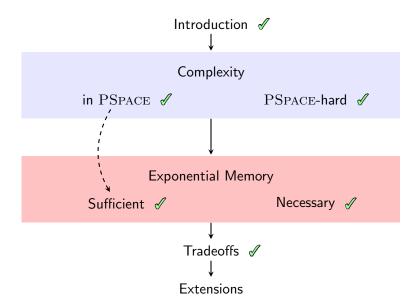
- **Recall:** Player 0 has winning strategy with cost  $d^2 + 2d$  and size  $2^d 2$ : store all d requests made by Player 1.
- **Smaller strategy:** Only store first *i* unique requests, then default to largest answer.
  - $\Rightarrow$  achieves cost  $d^2 + 3d i$  and size  $\sum_{j=1}^{i-1} {n \choose j}$
- These are the smallest strategies achieving this cost.

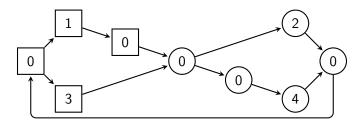
### Theorem

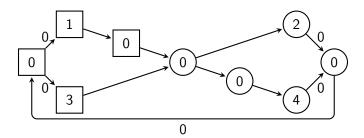
Fix some finitary parity game  $\mathcal{G}_d$  as before. For every i with  $1 \leq i \leq d$  there exists a strategy  $\sigma_i$  for Player 0 in  $\mathcal{G}_d$  such that  $\sigma_i$  has cost  $d^2 + 3d - i$  and size  $\sum_{j=1}^{i-1} \binom{d}{j}$ . Also, all these strategies are minimal for their respective cost.

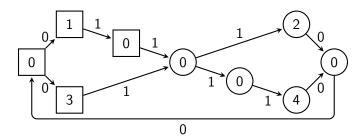


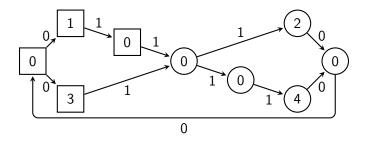






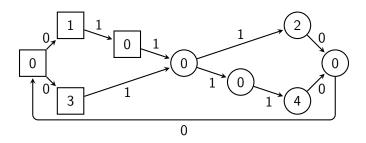






Finitary parity games are special case

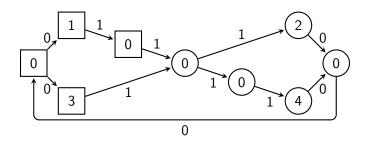
# **Extension 1: Parity Games with Costs**



Finitary parity games are special case

 $\Rightarrow PSPACE$ -hard  $\Rightarrow Exp.$  memory necessary

# **Extension 1: Parity Games with Costs**

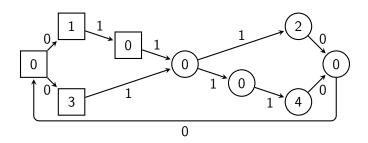


Finitary parity games are special case

 $\Rightarrow PSPACE$ -hard  $\Rightarrow$  Exp. memory necessary

Algorithm for finitary games works with some extensions

# **Extension 1: Parity Games with Costs**



Finitary parity games are special case

 $\Rightarrow PSPACE$ -hard  $\Rightarrow$  Exp. memory necessary

Algorithm for finitary games works with some extensions

 $\Rightarrow$  In PSPACE  $\Rightarrow$  Exp. memory sufficient

#### **Finitary Streett Games**

- in parity game, large responses answer all lower requests
- in Streett games, there are requests and responses, but not hierarchical

#### Finitary Streett Games

- in parity game, large responses answer all lower requests
- in Streett games, there are requests and responses, but not hierarchical

#### **Streett Games with Costs**

■ Streett condition and weights from  $\{0,1\}$ 

#### **Finitary Streett Games**

- in parity game, large responses answer all lower requests
- in Streett games, there are requests and responses, but not hierarchical

#### **Streett Games with Costs**

lacksquare Streett condition and weights from  $\{0,1\}$ 

#### No jump in complexity:

- $\blacksquare$  Solving finitary Streett games is already  $\operatorname{ExpTime}\text{-complete}$  and exponential memory is necessary
  - $\Rightarrow$  Appropriate  $\mathcal{G}'$  can be solved directly

### **Finitary Streett Games**

- in parity game, large responses answer all lower requests
- in Streett games, there are requests and responses, but not hierarchical

#### **Streett Games with Costs**

lacksquare Streett condition and weights from  $\{0,1\}$ 

## No jump in complexity:

- Solving finitary Streett games is already ExpTime-complete and exponential memory is necessary
  - $\Rightarrow$  Appropriate  $\mathcal{G}'$  can be solved directly

#### **Streett Games with Costs**

- Deciding winner ExpTime-complete
- Exponential memory necessary and sufficient

|            | Parity   |  |
|------------|----------|--|
|            |          |  |
|            | UP∩co-UP |  |
| Strategies | Pos.     |  |
|            |          |  |

|                          | Parity Parity with Costs |                  |
|--------------------------|--------------------------|------------------|
|                          |                          | Winning          |
| Complexity<br>Strategies | UP∩co-UP<br>Pos.         | UP∩co-UP<br>Pos. |

|            | Parity                                          | Parity with Costs                               |              |
|------------|-------------------------------------------------|-------------------------------------------------|--------------|
|            |                                                 | Winning                                         | Optimal      |
| Complexity | $\mathrm{UP}\cap\mathrm{co}\text{-}\mathrm{UP}$ | $\mathrm{UP}\cap\mathrm{co}\text{-}\mathrm{UP}$ | PSPACE-comp. |
| Strategies | Pos.                                            | Pos.                                            | Exp.         |

|                          | Parity           | Parity with Costs |                                          |
|--------------------------|------------------|-------------------|------------------------------------------|
|                          |                  | Winning           | Optimal                                  |
| Complexity<br>Strategies | UP∩co-UP<br>Pos. | UP∩co-UP<br>Pos.  | $\operatorname{PSPACE}	ext{-comp}.$ Exp. |

|                          | Streett       |  |
|--------------------------|---------------|--|
|                          |               |  |
| Complexity<br>Strategies | co-NP<br>Exp. |  |

|                          | Parity           | Parity with Costs |                      |
|--------------------------|------------------|-------------------|----------------------|
|                          |                  | Winning           | Optimal              |
| Complexity<br>Strategies | UP∩co-UP<br>Pos. | UP∩co-UP<br>Pos.  | PSPACE-comp.<br>Exp. |

|                          | Streett       | Streett with Costs |  |
|--------------------------|---------------|--------------------|--|
|                          |               | Winning            |  |
| Complexity<br>Strategies | co-NP<br>Exp. | ExpTime<br>Exp.    |  |

|                          | Parity           | Parity with Costs |                      |
|--------------------------|------------------|-------------------|----------------------|
|                          |                  | Winning           | Optimal              |
| Complexity<br>Strategies | UP∩co-UP<br>Pos. | UP∩co-UP<br>Pos.  | PSPACE-comp.<br>Exp. |

|                          | Streett       | Streett with Costs |                    |
|--------------------------|---------------|--------------------|--------------------|
|                          |               | Winning            | Optimal            |
| Complexity<br>Strategies | CO-NP<br>Exp. | ExpTime<br>Exp.    | ExpTime-comp. Exp. |

|                          | Parity           | Parity with Costs |                      |
|--------------------------|------------------|-------------------|----------------------|
|                          |                  | Winning           | Optimal              |
| Complexity<br>Strategies | UP∩co-UP<br>Pos. | UP∩co-UP<br>Pos.  | PSPACE-comp.<br>Exp. |

|                          | Streett       | Streett with Costs |                       |
|--------------------------|---------------|--------------------|-----------------------|
|                          |               | Winning            | Optimal               |
| Complexity<br>Strategies | co-NP<br>Exp. | ЕхРТіме<br>Ехр.    | ExpTime-comp.<br>Exp. |

Slides available at react.uni-saarland.de/people/weinert.html