Easy to Win, Hard to Master: Playing Infinite Games Optimally

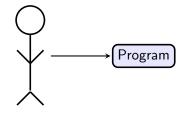
Alexander Weinert

Saarland University

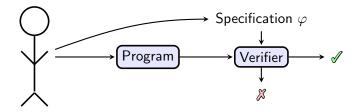
April 26th, 2017

Thesis Proposal Talk

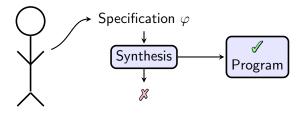
Programming



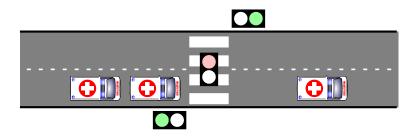
Program Verification



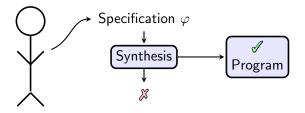
Program Synthesis



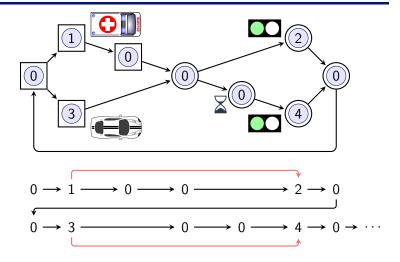
Example



Program Synthesis

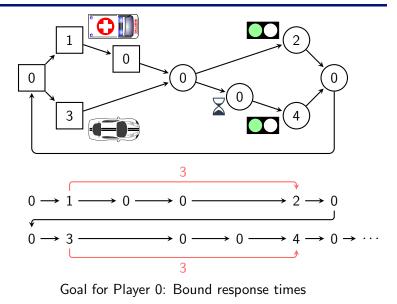


Parity Games



Example due to (Fijalkow and Chatterjee, Infinite-state games, 2013) Deciding winner in $NP \cap CO-NP$ Positional Strategies

Finitary Parity Games



Decision Problem

Theorem (Chatterjee, Henzinger, Horn, 2009)

The following decision problem is in PTIME:

Input: Finitary parity game GQuestion: Does there exist a strategy σ with $Cst(\sigma) < \infty$?

Theorem (W., Zimmermann, 2016)

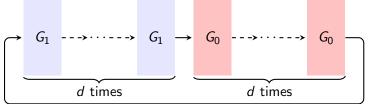
The following decision problem is PSPACE-complete: Input: Finitary parity game \mathcal{G} , bound $b \in \mathbb{N}$ Question: Does there exist a strategy σ with $Cst(\sigma) \leq b$?

Memory Requirements (for Player 0)

Theorem (W., Zimmermann, 2016)

Optimal strategies for finitary parity games need exponential memory

Sufficiency: Corollary of proof of PSPACE-membership **Necessity:**

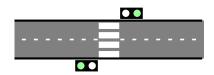


Player 0 needs to recall d positions with d possible values \Rightarrow Player 0 requires $\approx 2^d$ many memory states

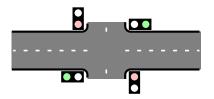
Results so far

	Parity	Finitary Parity	
		Winning	Optimal
Complexity	$\mathrm{NP}\cap\mathrm{co}\text{-}\mathrm{NP}$	PTIME	PSPACE -comp.
Strategy Size	1	1	Exp.

Outlook



Multi-Dimensional Games



Imperfect Information

Conclusion

Results so far: Forcing Player 0 to answer quickly in (finitary) parity games makes it harder

- to decide whether she can satisfy the bound
- for her to play the game

Guiding Question: What costs does playing games optimally incur

- in terms of computing a strategy?
- in terms of the complexity of strategies?